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a b s t r a c t 
In this paper, we give formulas for the swimming of simplified two-dimensional bodies in complex fluids 
using the reciprocal theorem. By way of these formulas we calculate the swimming velocity due to small- 
amplitude deformations on the simplest of these bodies, a two-dimensional sheet, to explore general 
conditions on the swimming gait under which the sheet may move faster, or slower, in a viscoelastic 
fluid compared to a Newtonian fluid. We show that in general, for small amplitude deformations, a speed 
increase can only be realized by multiple deformation modes in contrast to slip flows. Additionally, we 
show that a change in swimming speed is directly due to a change in thrust generated by the swimmer. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 
The locomotion of microscopic cells through viscous fluids is 

common in many areas of biology, from microbes searching for 
food [1,2] or causing diseases [3] , to sperm cells in mammalian 
reproduction [4] . The fluid forces generated by a deforming body 
at low Reynolds numbers are arguably well understood for New- 
tonian fluids [5,6] , but insight is far more limited when consid- 
ering bio-locomotion through fluids that display non-Newtonian 
rheology [7] . 

Many biological fluids like blood, mucus, saliva and syn- 
ovial fluid, demonstrate viscoelasticity and shear-thinning viscosity 
[8–10] . A viscoelastic fluid retains a memory of its flow history, 
while a shear-thinning fluid experiences a decrease in apparent 
viscosity with applied strain-rate and it is in such fluid environ- 
ments that many microorganisms swim; Helicobacter pyroli in gas- 
tric mucus [11] , and spermatozoa wading through cervical mam- 
malian mucus [12] are common examples. Swimming in complex 
fluids can be substantially different than in Newtonian fluids, for 
example, locomotion in complex fluids is not constrained by the 
scallop theorem [13] meaning reciprocal swimming strokes, which 
produce no net motion whatsoever in Newtonian fluids, can propel 
a swimmer in complex fluids [14–16] . 

Several recent articles have investigated changes in swimming 
kinematics due to nonlinear viscoelasticity theoretically [14,17–30] , 
numerically [31–36] and experimentally [37–42] , while compre- 
hensive reviews have summarized key findings in the theory [43] , 
and experiments [44] , of biolocomotion in complex fluids. The pic- 
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ture that emerges from recent studies on the effects of viscoelastic 
fluids, is that whether a swimmer goes faster or slower depends 
on the type of gait [31,34] or the amplitude of the gait [33,37] . 
Several studies have used the simplified models such as an infi- 
nite sheet [25,26,43] or an infinite helix [27] undergoing general 
small-amplitude deformations to shed light on how a particular 
gait (or which) may lead to faster (or slower) swimming in the 
presence of a nonlinearly viscoelastic fluid. It is in this vein that 
we proceed here, extending the recent results of Riley and Lauga 
[26] to a broader class of boundary conditions on flat body. We dis- 
cuss in detail why all individual deformation modes lead to slower 
swimming and how one may obtain faster swimming by deter- 
mining the nature of the nonlinear response of the fluid. We also 
show that a prescribed slip velocity can lead to an entirely dif- 
ferent viscoelastic response compared to a prescribed deformation. 
To do this, we first derive integral theorems for the locomotion of 
two-dimensional bodies in complex fluids [23] , extending to non- 
Newtonian fluids recent results on the use of the reciprocal the- 
orem for the swimming of two-dimensional bodies in Newtonian 
fluids [45] . Through the use of these integral theorems one can 
show that slower swimming is directly the result of a reduction 
of thrust in a viscoelastic fluid for any single (small amplitude) de- 
formation mode. 
2. Swimmer motion 

The motion of the surface, S ( t ), of a shape changing swimmer 
may be decomposed into translation, rotation and deformation as 
follows: 
u (x S ) = U + ! × r S + u S , (1) 
where x S ∈ S ( t ). The first two terms represent rigid-body motion, 
U is the instantaneous translation, ! is the angular velocity, while 
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Fig. 1. Schematic representation of a general swimmer. A swimmer is defined as 
body with whose surface deforms in time thereby effecting an instantaneous rigid- 
body translation, U , and rotation, !. 
the third term u S is deformation due to a swimming gait [43,46] . 
One often defines r S from the center of mass (extensive discus- 
sion is provided elsewhere [45–48] ) and periodic deformations are 
written as deviations from a (simple) reference surface S 0 in a 
body-fixed frame as 
r S = r 0 + !r (r 0 , t) , (2) 
and then u S = ∂ !r /∂ t (see Fig. 1 ). 

We describe here the locomotion of microorganisms small 
enough that the Reynolds number of the flows generated may be 
taken to be zero: 
∇ · σ = −∇p + ∇ · τ = 0 , (3) 

where σ = −pI + τ is the stress tensor of a fluid with velocity, 
pressure and deviatoric stress fields u , p , τ , respectively. Addition- 
ally the bodies themselves are considered instantaneously force 
and torque free, 
F = ∫ 

S n · σd S = 0 , (4) 
L = ∫ 

S r S × (n · σ) d S = 0 , (5) 
where the surface S is a function of time and the normal to the 
surface n points into the fluid. For compactness, we introduce six 
dimensional vectors that contain both force and torque F = [ F L ] ⊤ 
and translation and rotation U = [ U !] ⊤ . 
3. The complex reciprocal theorem 

Stone and Samuel showed that determining the rigid-body mo- 
tion of a deforming swimmer [49] , U and !, may be greatly sim- 
plified by appealing to the Lorentz reciprocal theorem [50] . They 
showed that by using the solution to the auxiliary rigid-body re- 
sistance problem one may solve for the swimming kinematics of a 
deforming body without resolving the flow field it generates. Lauga 
later extended the use of the reciprocal theorem for swimming to 
non-Newtonian fluids [14] and these ideas were then subsequently 
further developed [23,43] and integral theorems have subsequently 
been used in a number of recent theoretical studies of locomotion 
in complex fluids [21,24,28,29,51] . We present here integral theory 
for a general non-Newtonian fluid in the formalism of Elfring and 
Lauga [43] before showing its application to simple bodies. 

For a force- and torque-free swimmer of surface S in a non- 
Newtonian fluid we denote the velocity field and its associated 
stress tensor by u and σ , while for a body of the same instan- 
taneous shape subject to (an arbitrary) rigid-body translation and 
rotation ˆ U and ˆ ! in a Newtonian fluid ( ̂  τ = ˆ η ˆ ˙ γ) the velocity field 
and its associated stress tensor are denoted by ˆ u and ˆ σ . Each 
fluid is in mechanical equilibrium and hence the mixed products 
ˆ u · (∇ · σ) = u · (∇ · ˆ σ) = 0 , then by integrating over the volume of 
fluid V ( t ) external to the surface S ( t ) with normal n (positive into 

the fluid) and invoking the divergence theorem one obtains 
∫ 

S n · σ · ˆ u d S + ∫ 
V σ : ∇ ̂  u d V 

= ∫ 
S n · ˆ σ · u d S + ∫ 

V ˆ σ : ∇u d V = 0 . (6) 
The first term on the left-hand side of Eq. (6) is zero because the 
swimmer is force- and torque-free, and hence the second term 
on the left-hand side is also zero, by construction. The first term 
on the right-hand side of Eq. (6) may be expanded by using the 
boundary motion on S in (1) and so, assuming the fluids are in- 
compressible, we have 
ˆ F · U = − ∫ 

S n · ˆ σ · u S d S − ˆ η ∫ 
V ˆ ˙ γ : ∇u d V, (7) 

0 = ∫ 
V τ : ∇ ̂  u d V. (8) 

Here ˆ F represents the force and torque resulting from the rigid- 
body motion of S . 

Due to the linearity of the Stokes equations we may write 
ˆ u = ˆ G · ˆ U , ˆ σ = ˆ T · ˆ U while ˆ F = −ˆ R · ˆ U . We also assume a simplis- 
tic decomposition of the constitutive relation into linear and non- 
linear components τ = η ˙ γ + N (u , τ) , but, as shown by Lauga [23] , 
we expect such a form to arise when solving the problem pertur- 
batively, either expanding in a weakly non-Newtonian limit or a 
small deformation limit, in either case, the effects of nonlineari- 
ties are small compared to the leading order Newtonian behavior. 
Substituting into (7) and utilizing (8) while discarding the arbitrary 
vector ˆ U yields 
U = ˆ R −1 · [∫ 

S u S · (n · ˆ T ) d S − ˆ η
η

∫ 
V N : ∇ ̂  G d V ]. (9) 

The first term in the brackets represents thrust generated in a 
Newtonian fluid (as we show below) whereas the volume inte- 
gral only contributes if the fluid in the swimming problem is 
non-Newtonian and hence is a measure of the modification of 
the swimming dynamics due to the presence of non-Newtonian 
stresses. 

One may also obtain integral statements for drag and thrust 
in complex fluids. In the drag problem, the body is simply under- 
going rigid body motion, namely u D (x S ) = U + ! × r S , whereas in 
the thrust problem the body is deforming but otherwise held fixed 
in place u T (x S ) = u S . Due to the linearity of the Stokes equations, 
these two flow fields sum to give the flow field due to swimming 
in a Newtonian fluid, but in a complex fluid this is in general not 
the case due to the nonlinearity of the constitutive relation. Fol- 
lowing the approach above we can show that the drag on a body 
of shape S under rigid body motion: 
F D = −η

ˆ η ˆ R · U − ∫ 
V N D : ∇ ̂  G d V. (10) 

Whereas the thrust generated by a deforming body with u T (x S ) = 
u S , is 
F T = η

ˆ η
∫ 

S u S · (n · ˆ T ) d S − ∫ 
V N T : ∇ ̂  G d V. (11) 

The nonlinear components, N D = N (u D , τD ) and N T = N (u T , τT ) , 
depend on the respective drag and thrust fields. As we can see, 
taking F D + F T = 0 does not, in general, lead to (9) , unlike for a 
Newtonian fluid, because N ̸ = N T + N D . 

We note that the formulas derived here are independent of the 
choice of viscosity, ˆ η, in the auxiliary Newtonian problem. In par- 
ticular, there is no requirement that ˆ η = η although such a choice 
(when sensible) will simplify the appearance of the formulas. 
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3.1. Small amplitude deformations 

A deforming body will have a time dependent shape, S ( t ), but if 
the amplitude of the deformation is small, then we can, through 
Taylor series recast the problem onto a simpler, static reference 
surface, S 0 with boundary velocity u S 0 [52,53] . The velocity field 
is expanded 
u (r S ) = u (x 0 ) + !r · ∇u | x 0 + O(| !r | 2 ) , (12) 
where !r = r S − r 0 and x 0 ∈ S 0 . Rearranging we obtain the bound- 
ary condition on S 0 , 
u (x 0 ) = U + ! × r 0 + u S 0 , (13) 
where 
u S 0 = ∂!r 

∂t + ! × !r − !r · ∇u | x 0 + O(| !r | 2 ) . (14) 
Note that the swimming gait on S 0 , u S 0 , depends on gradients 

of the (unknown) flow field u and the rotation rate of the swim- 
mer !. However if we take !r = ϵr 1 where ϵ ≪ 1, is a dimension- 
less measure of gait amplitude, then expand the velocity field in a 
regular perturbation series, u = ∑ 

m ϵm u m , with boundary condi- 
tion u S 0 (ϵ) = ϵu S 0 1 + ϵ2 u S 0 2 + ... where 
u S 0 1 = ∂r 1 

∂t , (15) 
u S 0 2 = !1 × r 1 − r 1 · ∇u 1 | x 0 , (16) 
we obtain boundary conditions for the velocity field on S 0 , which 
are known order-by-order. Furthermore, upon expanding all fields 
in ϵ, we see that the leading order effect of the nonlinearity in 
the constitutive equation enters, at most, at quadratic order N = 
ϵ2 N 2 [ u 1 , τ1 ] . We proceed by applying the reciprocal theorem in 
(9) directly on S 0 , which is permissible because the stress in the 
fluid between S and S 0 is divergence free [43] , to obtain 
U = ϵˆ R −1 · ∫ 

S 0 u S 0 1 · (n · ˆ T ) d S 
+ ϵ2 ̂  R −1 · [∫ 

S 0 u S 0 2 · (n · ˆ T ) d S − ˆ η
η

∫ 
V 0 N 2 : ∇ ̂  G d V ]

+ O(ϵ3 ) . (17) 
The first term typically does not contribute to steady-state swim- 
ming as for a periodic gait we have u S 0 1 = 0 (where here an overbar 
denotes a time-average over a period 2 π / ω). If the boundary con- 
ditions have ϵ → −ϵ symmetry then we should expect ⟨ u S 0 1 ⟩ = 0 
(where the angle brackets denote a surface average over S 0 ), which 
leads to zero net velocity for simple bodies as we will see. When 
there is no net motion of the body at leading order, U 1 = 0 , then 
the boundary conditions in the swimming problem are precisely 
equal to a thrust problem where the body is held fixed to lead- 
ing order, u 1 (x 0 ) = u S 0 1 . In this case, it follows that the first vis- 
coelastic correction, is equal in the swimming and thrust problems, 
N 2 = N T, 2 , in other words the change in swimming speed is due 
entirely to the modification of the thrust by the complex rheology. 
As a result, to leading order, Newtonian drag (but with viscosity η) 
balances the thrust generated in a viscoelastic fluid 
U = ˆ η

η
ˆ R −1 · F T , (18) 

where the thrust is given by the reciprocal theorem (11) . As we 
shall show below, for a generalized swimming sheet in a viscoelas- 
tic fluid, the thrust for any single temporal deformation mode is 
diminished thereby causing a reduction of swimming speed. 

4. Viscoelastic fluid relations 
In this work we consider a general constitutive relation for 

polymeric fluids given by 
A j τ( j) = η( j) 

0 B j ˙ γ + N ( j) (u , τ( j) ) , (19) 
where the deviatoric stress tensor is written as a sum of j relax- 
ation modes, τ = ∑ 

j τ( j) , η( j) 
0 is the zero-shear-rate viscosity for 

the j -th mode, A j and B j are linear operators in time and N ( j ) is 
a symmetric tensor that depends nonlinearly on the velocity and 
stress and represents the transport and stretching of the polymeric 
microstructure by the flow [14,54] . 

We shall neglect here the influence of a particular initial stress 
state in the fluid, suitable when determining the steady swimming 
speed of a microorganism, in which case we may write the flow 
and stress fields as time periodic, expressed generally as 
u = ∑ 

p u (p) e −ipωt . (20) 
Upon summing over all relaxation modes ( j ) we may write the 
constitutive relationship for each temporal mode ( p ) as 
τ(p) = η∗(p) ̇ γ (p) + N (p) , (21) 
where η∗(p) = ∑ 

j η( j) 
0 [ B j (p) /A j (p)] and N (p) = ∑ 

j [1 + 
A j (p)] −1 N ( j,p) where A j ( p ) and B j ( p ) are the characteristic poly- 
nomials of the differential operators (i.e e ipωt A j [ e −ipωt ] ). For 
each Fourier mode we thus have a linear response with com- 
plex viscosity, η∗( p ), and a nonlinear term. As an example, the 
Oldroyd-B equation, which has a single relaxation mode, yields 
η∗(p) = η0 (1 − ipωλ2 ) / (1 − ipωλ1 ) where λ1 is the relaxation 
time and λ2 is the retardation time. 

Subsitution of Eq. (21) into Eq. (9) and recasting onto a static 
shape S 0 we obtain a spectral decomposition of the swimming ve- 
locity in a non-Newtonian fluid 
U (p) = ˆ R −1 · [ ∫ 

S 0 u S 0 , (p) · (n · ˆ T ) d S 
− ˆ η

η∗(p) 
∫ 

V 0 N (p) : ∇ ̂  G d V ] . (22) 
We are often interested in only the zeroth mode, or mean swim- 
ming velocity, U (0) = U . In either case we see that the non- 
Newtonian contribution arises directly as a result of the tensor N 
and therefore, linearly viscoelastic fluids yield precisely the same 
swimming velocity as Newtonian fluids for a given prescribed gait. 
5. Model swimmers 

It is typical, for analytical tractability, for S 0 to align with a 
coordinate system, in particular, spherical, cylindrical and planar 
swimmers. For two-dimensional swimmers the resistance problem 
is ill-posed, but as shown previously for Newtonian fluids [45] , use 
of the reciprocal theorem for swimming is still valid in two dimen- 
sions. Here, we provide simplified reciprocal theorem formulas for 
spherical, cylindrical and planar swimmers in complex fluids. 
5.1. Spherical swimmers 

If the body is a sphere of radius a , then the rigid body problem 
leads to resistance tensors ˆ R F U = 6 π ˆ ηa I , ˆ R L ( = 8 π ˆ ηa 3 I , ˆ R F ( = 0 
and ˆ R LU = 0 , while traction on the surface gives n · ˆ T = − 3 ̂ η

2 a [ I 2 %] 
where )i j = ϵi jk r k . With these relations, the swimming speed for a 
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sphere 
U = − 1 

4 πa 2 
∫ 

S 0 
[

I 
3 

2 a 2 %⊤ ] · u S 0 d S − ˆ η
η

∫ 
V 0 N : ∇ ̂  G · ˆ R −1 d V, (23) 

where for a sphere 
∇ ̂  G · ˆ R −1 = 1 

8 π ˆ η
[(

1 + a 2 
6 ∇ 2 )∇G ∇ ( 1 

| r | 3 %
)]

. (24) 
and G = 1 

| x | (I + xx 
| x | 2 ) is the Oseen tensor, as shown by Lauga [23] . 

Setting N = 0 one obtains the result for a Newtonian fluid as 
shown by Stone and Samuel [49] . 
5.2. Cylindrical swimmers 

For cylindrical swimmers, who may rotate about their axis of 
symmetry but translate only in the plane perpendicular to this, the 
stress may be written 
n · ˆ T = − ˆ η

a [ αI ∥ 2 % · I ⊥ ] , (25) 
where α is a dimensionless constant (which is singular in Re). We 
use the ∥ subscript to denote in-plane components while ⊥ de- 
notes the out of plane component. Integrating over the perimeter 
we may obtain the mobilities per unit length ˆ R −1 

F U = (2 π ˆ ηα) −1 I ∥ 
and ˆ R −1 

L ( = (4 π ˆ ηa 2 ) −1 I ⊥ . Combining these terms we obtain the 
swimming velocity 
U = − 1 

2 πa 
∫ 

S 0 
[ 

I 
1 
a 2 %⊤ 

] 
· u S 0 d S − ˆ η

η

∫ 
V 0 N : ∇ ̂  G · ˆ R −1 d V, (26) 

where for a cylinder 
∇ ̂  G · ˆ R −1 = 1 

4 π ˆ η
[(

1 + a 2 
4 ∇ 2 )∇G 1 

a ∇ (1 
r %

)]
, (27) 

and G = − ln (r/a ) I + xx 
r 2 is the Oseen tensor in 2D. Notice that the 

result is independent of α and thus the singular nature of the re- 
sistance problem is avoided. 
5.3. Planar swimmers 

Here we consider a two-dimensional planar swimmer (sheet), 
which may have different prescribed velocities, u S 1 and u S 2 , on 
each side ( S 0 = S 1 ∪ S 2 ), unequally spaced between two rigid sur- 
faces. We restrict the sheet to in-plane translation and so look only 
at the two-dimensional resistance problem, which is simply shear 
flow hence 
n · ˆ T = − ˆ η

h I ∥ , ∇ ̂  G = −1 
h nI ∥ , (28) 

where now I ∥ is two-dimensional. If the distances between the 
swimmer and the two walls are h 1 and h 2 , we have then as the 
only non-zero mobility per unit area R −1 

F U = h 1 h 2 
ˆ η(h 1 + h 2 ) I ∥ . Keeping in 

mind that the unit normal n and distance to the wall h changes 
depending on the side we combine with the above to obtain 
U = 1 

h 1 + h 2 
(

− h 2 ⟨ u S 1 ⟩ − h 1 ⟨ u S 2 ⟩ 
+ 1 

η

[∫ h 1 
0 h 2 ⟨ N · n ⟩ d x n + ∫ h 2 

0 h 1 ⟨ N · n ⟩ d x n ])
. (29) 

Here again, the angle brackets denote a surface average and d x n = 
d x · n . In an unbounded fluid we simply take h 1 = h 2 → ∞ to ob- 
tain 
U = −⟨ u S 0 ⟩ + 1 

η

〈 ∫ ∞ 
0 N · n d x n 〉 , (30) 

where the average is over both sides of the sheet. 

6. Generalized sheet in a viscoelastic fluid 
Given the simple form of the integral theorem for swimming 

of two-dimensional objects we look to categorize the motion of a 
generally deforming flat sheet. We consider motions that are peri- 
odic in time and in space 
!r (r 0 , t) = A ∑ 

n,p c n,p e in k ·r 0 e −ipωt , (31) 
where A is the characteristic amplitude of deformation, k is the 
wave vector, r 0 is a reference point on a flat plane with normal n 
and n · k = 0 . The system is invariant in the direction n × k . The 
Fourier coefficients, c n,p = a n,p (k / | k | ) + b n,p n , include both trans- 
verse and longitudinal deformations. The velocity field boundary 
condition on the sheet is hence 
u S = ∂!r 

∂t = −ωA ∑ 
n,p ipc n,p e in k ·r 0 −ipωt . (32) 

We wish to describe this motion on the reference surface ( S 0 ) and 
so expand in powers of !r 
u S 0 = u S − !r · ∇u | r 0 + · · ·

= −ωA ∑ 
n,p ipc n,p e in k ·r 0 −ipωt − A ∑ 

n,p e in k ·r 0 −ipωt c n,p · ∇u | r 0 + · · ·
(33) 

This expansion necessitates obtaining gradients of the flow field 
u unless there are no transverse deformations, c n,p · n = 0 . To de- 
termine the swimming motion when transverse deformations are 
present one may posit a regular pertubation expansion of all fields 
in powers of ϵ ≡ A | k | ≪ 1. We can obtain the leading order (New- 
tonian) flow field, u 1 , using the generalized boundary conditions 
above and classical methods discussed elsewhere [55] . By the inte- 
gral formula (30) , in a Newtonian fluid the time-averaged (steady) 
swimming velocity is then immediately found to be 
U N = −⟨ u S 0 ⟩ = ωA 2 k ∑ 

p ˆ U N 2 (p) + O(ωk 2 A 3 ) , (34) 
where each frequency component 
ˆ U N 2 (p) = ∑ 

n np [a n,p a † n,p − b n,p b † n,p ]. (35) 
We see that all modes are decoupled. For traveling waves in the k 
direction n = p (or n = −p for waves in the −k direction) and we 
arrive at known results for a general swimming sheet with both 
transverse and longitudinal waves [45,56,57] where 
ˆ U N 2 (p) = p 2 [a p,p a † p,p − b p,p b † p,p ]. (36) 
Note that the compressional and transverse waves lead to op- 
positely signed motion even though both waves are traveling in 
the same direction and so there is no net motion, at O(ϵ2 ) , if ∑ 

p p 2 [ a p,p a † p,p − b p,p b † p ] = 0 . 
Now to study the effects on viscoelasticity due to this general 

boundary deformation, we must select a viscoelastic constitutive 
equation. In general, under a small-amplitude expansion we have 
at the first two orders 
τ(p) 

1 = η∗(p) γ (p) 
1 , (37) 

τ(p) 
2 = η∗(p) γ (p) 

2 + N (p) 
2 (u 1 ) . (38) 

The leading order velocity field is Newtonian while the stress field 
displays both a viscous and elastic response but there is no vis- 
coelastic effect on locomotion at this order of approximation as 
N 1 = 0 . Non-linearities arising from the constitutive relation en- 
ter at second order but because we are interested here only in 
the steady swimming speed, we need only to evaluate the mean, 
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N 2 = N (0) 

2 . We use here the Oldroyd-B constitutive equation, which 
in the small amplitude limit is broadly representative of nonlinear 
viscoelastic fluids for swimming [17] . The nonlinear contribution is 
given by the tensor 
N 2 = ∑ 

p η0 
ipω 

[
η∗(p) 
η0 − 1 ]

×
[ (∇u (-p) 

1 )⊤ 
· ˙ γ (p) 

1 + ˙ γ (p) 
1 · ∇u (−p) 

1 − u (−p) 
1 · ∇ ̇ γ (p) 

1 ] 
. (39) 

Armed with the solution of the leading order Newtonian flow 
field u 1 , only straightforward integration, via (30) , is then needed 
to obtain the swimming velocity for a generally deforming flat 
sheet in a (Oldroyd-B) viscoelastic fluid, to leading order 
U = ω A 2 k ∑ 

p η∗(p) 
η0 ˆ U N 2 (p) . (40) 

We see from the above equation that the contribution of each 
mode is rescaled by the real part of the dimensionless complex 
viscosity. This factor is always less than or equal to one, 
Re [η∗(p) 

η0 
]

= 1 + p 2 De 2 β
1 + p 2 De 2 ≤ 1 , (41) 

because the retardation time, λ2 , is smaller than the relaxation 
time, λ1 , in viscoelastic fluids, β = λ2 /λ1 < 1 . This means that the 
swimming speed, due to any individual temporal mode, is slower 
than in a Newtonian fluid. The Deborah number De = ωλ1 charac- 
terizes the response of the fluid, when the time scale of actuation 
is much longer than that of the relaxation of the fluid, De → 0, and 
we recover the Newtonian swimming speed. Physically, the thrust 
(by way of Eq. (18) ) is reduced by a factor equal to the frequency 
dependent viscosity, meaning the higher frequencies are increas- 
ingly damped. Now because each individual mode is less effective 
as a means of propulsion, 
Re [η∗(p) 

η0 
]∣∣ ˆ U N 2 (p) ∣∣ ≤

∣∣ ˆ U N 2 (p) ∣∣, (42) 
slower swimming in a viscoelastic fluid is guaranteed if ˆ U N 2 (p) 
does not change sign ∀ p , an example being a sheet passing only 
unidirectional transverse waves. However, swimming need not be 
slower in general because ˆ U N 2 (p) can certainly change sign in more 
general deformations. In particular, one may note that unidirec- 
tional transverse and longitudinal waves lead to motion in oppo- 
site directions and therefore may result in faster swimming in a 
viscoelastic fluid. 

A simple example of faster swimming is found by recalling that 
in a Newtonian fluid the swimming speed (at O(ϵ2 ) ) is zero when 
a sheet is passing unidirectional transverse and compressional de- 
formation waves if ∑ 

p p 2 [ a p,p a † p,p − b p,p b † p,p ] = 0 . In a viscoelastic 
fluid the same actuation may lead to net motion because the coef- 
ficients are rescaled by a factor that diminishes for higher modes. 
For example, if we take two modes, q and m , where q 2 b q,q b † q,q = 
m 2 a m,m a † m,m and all other modes zero, in a Newtonian fluid the 
thrust due to the two modes cancels one another and therefore 
there is no net motion at O(ϵ2 ) , U N = ωA 2 k ∑ 

p ˆ U N 2 (p) = 0 . In a 
viscoelastic fluid however, the higher frequency term is damped 
by a larger factor and hence the lower frequency component gen- 
erates a larger thrust leading to the swimming speed 
U = ω A 2 k ∑ 

p η∗( p ) 
η0 ˆ U N 2 ( p ) , 

= ωA 2 k m 2 a m,m a † m,m 2 (q 2 − m 2 )( 1 − β) De 2 
(
1 + m 2 De 2 )(1 + q 2 De 2 ) , (43) 

which is maximum when De = 1 / √ 
mq and decays quadratically as 

De → 0. If q 2 > m 2 then the swimmer moves in the direction of k 

as the thrust due to the compressional waves is dominant, if q 2 < 
m 2 the opposite is true, while if m = q there is only a single mode 
and the swimming speed is zero. 

Because higher frequencies are damped by larger factors, swim- 
mers may go faster in a viscoelastic fluid compared to a Newtonian 
fluid, as in the previous example, depending on the amplitudes of 
the modes and in general, the Deborah number. Lauga and Riley 
explore this effect with oppositely traveling transverse waves (for 
which ˆ U N 2 (p) = −p 2 [ b p,p b † p,p − b −p,p b † −p,p ] can change sign) finding 
the necessary conditions for two such waves to yield faster swim- 
ming [26] . Generally a swimmer may go faster, slower, or even 
stop in a viscoelastic fluid provided there are multiple modes and 
ˆ U N 2 (p) changes sign. 

It may seem obvious that the complex viscosity, measureable 
by the linear response (37) , determines the change in swimming 
speed due to a viscoelastic fluid, but if the fluid were only linearly 
viscoelastic there would be absolutely no change in the swimming 
speed from that of a Newtonian fluid. It is the nonlinear response 
that leads to change in the swimming speed, not the linear re- 
sponse, the tensor N 2 happens to lead to a rescaling of the Newto- 
nian solution by the viscous modulus and that result is remarkably 
robust. The same result holds for a sheet swimming near a wall 
and two-dimensional pumping [43] , as well as helical swimming, 
both in an unbound fluid and near wall [27] . The question one 
might ask is why should each mode, individually, be slower? In 
other words, why should the thrust generated by any single com- 
ponent of a deforming boundary condition necessarily be dimin- 
ished in a viscoelastic fluid? Ultimately we find that the nonlinear 
non-Newtonian response of the fluid is of the same form as the 
motion due to the deforming boundary in a Newtonian fluid, but 
oppositely signed, namely 
1 
η0 

∫ ∞ 
0 ⟨ N 2 [ u 1 ] · n ⟩ d x n = ∑ 

p 
[
η∗(p) 
η0 − 1 ]〈

r (−p) 
1 · ∇u (p) 

1 〉
S 0 , 

= −ωA 2 k ∑ 
p De G ∗(p) 

η0 ω ˆ U N 2 (p) . (44) 
Here we have written the response in terms of the elastic modulus 
G ∗ = −ipω η∗ ,whose real part is 
Re [G ∗(p) 

η0 ω 
]

= p 2 De (1 − β) 
1 + p 2 De 2 , (45) 

and so when summed with the Newtonian contribution the result 
for each mode is always slower. We will refer to this as an elastic 
reponse because the contribution of each mode is scaled by the 
(real part of the) elastic modulus, which goes to zero as De → 0. 

This begs the question of whether one may elicit an elastic re- 
sponse from the fluid by prescribing a velocity boundary condi- 
tion with no associated deformation? We find that if we directly 
prescribe a slip velocity u S = u S 0 , without deforming the body, 
!r = 0 , for example by modifying surface chemistry [58] , the re- 
sults can be markedly different. If we prescribe a general time- 
periodic slip velocity on a flat sheet, 
u S 0 = −ωA ∑ 

n,p ipc n,p e in k ·r 0 −ipωt , (46) 
to leading order this is the same boundary condition as prescribed 
above for a deforming sheet, but because here there is no as- 
sociated deformation ⟨ u S 0 ⟩ = 0 at all orders and the contribution 
to the swimming speed is entirely due to viscoelastic part of the 
thrust, namely 
U = −ωA 2 k ∑ 

p De G ∗(p) 
η0 ω ˆ U N 2 (p) . (47) 

We see a quadratic decay to zero as De → 0 because, as con- 
structed, there cannot be any net motion for these boundary 
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conditions in a Newtonian fluid. For large Deborah numbers the 
swimming speed approachs the limit U → −(1 − β) U N as De → ∞ 
where U N refers to the swimming speed of a deforming sheet in 
a Newtonian fluid as given by (34) . Analogously, the response is 
larger for higher modes. We also note that we were able to con- 
struct a response of a similar form (see (43) ) with traveling de- 
formation waves by superposing both transverse and longitudinal 
waves whose thrust is in opposition. If the thrust of these modes 
cancels exactly in a Newtonian fluid, as it did in our example, the 
swimming speed is determined by an elastic response, while if the 
two terms do not cancel exactly, there is an additional contribution 
to the swimming speed that scales as Re[ η∗/ η0 ]. 

We often see this form of elastic mediated response, 
U ∝ Re[ G ∗/ η0 ω], when no net motion would occur if the fluid were 
Newtonian. A similar response was found by Lauga for a squirmer 
with a slip velocity prescribed so that the swimming speed in 
a Newtonian fluid is zero [14] . Pak et al. also found the swim- 
ming velocity ∝ De (1 − β) / (1 + De 2 ) for two co-rotating spheres 
that propel due to the symmetry-breaking axial flows generated 
by viscoelastic hoop stresses [21] , and also similarly found by Yazdi 
and Ardekani for a reciprocal squirmer near a wall [24] . One also 
observes an elastic mediated synchronization of a system of two 
swimmers in a viscoelastic fluid that conversely displays no rel- 
ative phase evolution in a Newtonian fluid [43,59] . A similar re- 
sponse is also noted for force generation by the flapping motion of 
a rigid rod [60] . Naturally one might prescribe a slip velocity, with 
or without deformation, that would lead to swimming both in a 
Newtonian fluid and in a non-Newtonian fluid and therefore the 
swimming velocity could contain terms that vary as both the vis- 
cous and elastic modulus of the fluid, but if these boundary condi- 
tions are meant to emulate a deforming body then the result may 
not be physically sensible. 
7. Conclusion 

In this paper, we used a reciprocal theorem formulation to 
study the motion of swimming bodies in non-Newtonian fluids. 
We first used this formulation to show that generally, for small 
amplitude deformations, the leading order change in swimming 
speed is due to a modification of thrust generated by the swim- 
mer in complex fluids. We then used this theory to study the ef- 
fect of viscoelastic stresses on the swimming velocity of a sheet 
undergoing both general transverse and longitudinal deformations. 
We showed that it is possible to swim faster or slower, depending 
on the swimming gait, not only with oppositely traveling trans- 
verse waves but also with unidirectional traveling waves provided 
both transverse and longitudinal deformation modes are present 
and then demonstrate why and how this occurs, thereby extend- 
ing the results of Riley and Lauga to this case [26] . What becomes 
clear, even in this simplified model, is that it may be quite decep- 
tive to draw any conclusion about whether one swimmer should 
go faster or slower based only on observations of a different (sim- 
pler) swimmer, because of the unequal damping of higher and 
lower frequency deformation modes in viscoelastic fluids. In partic- 
ular, it is only with multiple (small amplitude) deformation modes 
that a swimming speed enhancement can be realized in viscoelas- 
tic fluids. Additionally, we found that while swimming by deforma- 
tion elicits a particular response in which all swimming modes are 
individually diminished in a viscoelastic fluid, one may prescribe 
slip velocities that lead to a completely different (elastic) response 
in which all modes, individually, lead to a speed increase. 

It remains to be seen how these results extend to finite bodies 
and whether a swimming gait may be decomposed into compo- 
nents that yield a viscous or an elastic response from the fluid. 
For example, numerical results indicate that even finite filaments 

passing sinusoidal deformation waves do not experience a speed 
increase in viscoelastic fluids, yet when a front-back asymmetry in 
amplitude (resembling flapping) is introduced an elastic response 
is excited that leads to a speed increase [31] , and when that am- 
plitude asymmetry is reversed a speed decrease is conversely ob- 
served [34] . Experimental work by Shen and Arratia [38] , with the 
nematode C. elegans , revealed a trend of decreasing speed with 
the increase in De. According to Sznitmann et al. [61,62] , C. ele- 
gans passes a transverse deformation consisting of opposite travel- 
ing waves with identical frequencies and our results indicate that 
this would lead to slower speeds, at small amplitudes, due to the 
lack of multiple modes required for enhancement. The front-back 
amplitude asymmetry of the swimmer also has an effect [34] , but 
such effects may be minimal for swimmers much longer than a 
typical wavelength [33,37] . 

The picture developed here is only valid at small amplitudes 
and it is not clear in what ways large amplitude motions change 
the response of the fluid. There is some indication that a single- 
mode swimming sheet is always slower, even for large amplitude 
deformations, as demonstrated both analytically [43] and numeri- 
cally [36] , but the opposite trend was found for helical swimmers, 
which are slower at small amplitude but were observed, both ex- 
perimentally [37] and numerically [33] , to swim faster at large am- 
plitude. For large amplitude deformations one should also consider 
the effects of finite extension as microorganisms typically reside in 
regimes where the Deborah number is not small [14,17] . Finally we 
note that the results presented here are limited to swimmers with 
a prescribed gait and the picture is further complicated when fluid 
stresses lead to changes in the gait itself [22,25] . 
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