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Maximizing propulsive thrust of a driven filament
at low Reynolds number via variable flexibility†

Zhiwei Peng,a Gwynn J. Elfring*a and On Shun Pak*b

At low Reynolds numbers the locomotive capability of a body can be dramatically hindered by the

absence of inertia. In this work, we show how propulsive performance in this regime can be significantly

enhanced by employing spatially varying flexibility. As a prototypical example, we consider the propulsive

thrust generated by a filament periodically driven at one end. The rigid case leads to zero propulsion, as

so constrained by Purcell’s scallop theorem, while for uniform filaments there exists a bending stiffness

maximizing the propulsive force at a given frequency; here we demonstrate explicitly how considerable

further improvement can be achieved by simply varying the stiffness along the filament. The optimal flexibility

distribution is strongly configuration-dependent: while increasing the flexibility towards the tail-end enhances

the propulsion of a clamped filament, for a hinged filament decreasing the flexibility towards the tail-end is

instead favorable. The results reveal new design principles for maximizing propulsion at low Reynolds

numbers, potentially useful for developing synthetic micro-swimmers requiring large propulsive force for

various biomedical applications.

1 Introduction

For swimming microorganisms, such as spermatozoa or bacteria,
the dominance of viscous forces over inertial effects leads to the
time-reversible Stokes equations governing the fluid motion. In
this low Reynolds number (Re) regime, Purcell’s ‘‘scallop theorem’’
states that a reciprocal motion (a deformation exhibiting time-
reversal symmetry) cannot generate any net propulsive thrust.1 In
order to bypass the constraint of time-reversibility, some micro-
organisms in nature including flagellated bacteria and sperma-
tozoa achieve self-propulsion by generating deformation waves
along their flexible bodies.2–5 Meanwhile, advances in fabrica-
tion technologies at small scales have enabled the recent rapid
development of synthetic micro-propellers capable of swimming
at speeds comparable with these microorganisms.6,7 In particular,
synthetic flexible filaments, such as nanowires and DNA linked
with magnetic beads, have been employed to enable locomotion
at small scales.8–11 While swimming microscale robots have the
potential to carry out minimally invasive medical operations,12–14

improving the swimming efficiency and propulsive performance
will be important aspects of future designs.

Different physical mechanisms that can enable or enhance
propulsion at low Re have been considered, including the
presence of boundaries,15–19 heterogeneous environments,20,21

viscoelasticity,22–29 and shear-dependent viscosity.30–34 In particular,
propulsion as a result of the interplay between hydrodynamics
and elasticity has been extensively studied.35–45 For instance, a
rigid filament driven at one end cannot propel itself because
the motion is reciprocal, but by introducing flexibility in the
filament, the coupling between viscous and elastic forces
produces deformation along the filament that can lead to
propulsion.36,37 For a given actuation frequency and filament
length, an optimal bending stiffness of the filament can be
determined to produce the largest propulsive force;5,35–37 how-
ever, the possibility of further improving the propulsion by
allowing variable flexibility along the filament remains largely
unexplored.

The interaction of flexible bodies with fluid flows at high
Reynolds number has long been studied46,47 and considerable
attention has been on the role of flexibility in animal
locomotion.48 Interestingly, some flying animals, such as hoverflies
and hummingbirds, exhibit a nonuniform distribution of flexibility
along their wings, which can potentially enhance the propulsive
performance.49,50 For a flapping wing in this high Reynolds
number regime, Shoele and Zhu51 have compared the performance
of several cases of nonuniform flexibility distributions, while a
recent study by Moore52 showed that optimal propulsion can be
achieved by having highly localized flexibility at the front of a wing
using a torsional spring arrangement. To investigate the effect of
non-uniform bending stiffness on fish swimming, Lucas et al.53

a Department of Mechanical Engineering, Institute of Applied Mathematics,

University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.

E-mail: gelfring@mech.ubc.ca
b Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA,

95053, USA. E-mail: opak@scu.edu

† Electronic supplementary information (ESI) available. See DOI: 10.1039/
c6sm02880b

Received 28th December 2016,
Accepted 1st March 2017

DOI: 10.1039/c6sm02880b

rsc.li/soft-matter-journal

Soft Matter

PAPER

http://crossmark.crossref.org/dialog/?doi=10.1039/c6sm02880b&domain=pdf&date_stamp=2017-03-07
http://rsc.li/soft-matter-journal


2340 | Soft Matter, 2017, 13, 2339--2347 This journal is©The Royal Society of Chemistry 2017

constructed foils of segmented stiffness profiles which are experi-
mentally shown to enhance the swimming performance. At low
Reynolds number, the exploration of enhanced propulsion via
variable flexibility is only yet nascent. Maier et al.11 constructed
an artificial micro-swimmer with a flagellar bundle possessing an
exponentially decreasing stiffness profile by using a DNA tile-tube
assembly attached to a magnetic head. It was found that the micro-
swimmers with exponentially decreasing stiffness could outper-
form swimmers with uniform stiffness along the flagellum under a
rotational actuation.

The above pioneering studies prompt an array of fundamental
questions: what stiffness profiles aside from exponential distribu-
tions can further enhance propulsion? Does the optimality of the
torsional spring arrangement at high Reynolds numbers still hold in
the low-Reynolds-number world? Are there any general design
principles for maximizing the propulsive thrust with non-uniform
flexibility? In this work, we address these questions by considering
the propulsive thrust generated by a slender filament driven at
one end at low Re. We demonstrate explicitly how spatially
varying flexibility can significantly enhance the propulsive thrust
by exploring a reduced-space of basis functions for the flexibility
distributions.

The paper is organized as follows. In Section 2 a general
formulation for the elastohydrodynamics of a boundary-actuated
flexible filament immersed in a viscous fluid is presented, before
considering asymptotic expansions for the solution of the non-
linear problem in the small-amplitude oscillation limit. In Section 3
we first show that though optimal at high Reynolds number,
a torsional spring arrangement cannot outperform the optimal
uniform stiffness at low Reynolds number. We then demonstrate
that, for a cantilevered filament, a higher propulsive thrust can be
achieved by having a decreasing stiffness from the driven end.
However, we emphasize in Section 3.4 that the conclusion cannot
be simply generalized to other mechanical tethering conditions. As
an example, we show that a hinged filament instead favors an
increasing stiffness from the driven end. Finally we conclude the
work with remarks in Section 4.

2 Problem formulation
2.1 Elastohydrodynamics

We consider an elastic and inextensible filament of length L and
radius r. The filament is slender, r/L { 1, and is immersed in a
viscous fluid such that the Stokes equations apply. The position
vector of a material point on the filament neutral line relative to
the laboratory frame at time t is defined as x(s,t), where s A [0,L] is
the arclength along the filament. We define the local unit tangent
and normal vectors as t = xs = coscex + sincey and n = ez � t,
where c(s,t) is the angle between the tangent vector t and the
positive x-direction (ex) and the subscript s denotes differentiation
with respect to the arclength (see Fig. 1 for a schematic).

The elastic filament is modeled as an Euler–Bernoulli beam
with an energy functional54,55

E ¼ 1

2

ðL
0

Axss
2dsþ 1

2

ðL
0

s xs � xs � 1ð Þds; (1)

where the bending stiffness (or rigidity), A(s), is allowed to vary
along the filament. The local inextensibility condition, xs�xs = 1,
is enforced by the Lagrange multiplier s(s,t). The elastic force
density along the filament can then be obtained by a variational
derivative,

felastic = �dE/dx = �qs[qs(Ak)n � tt], (2)

where the tensile force along the filament t = s + Ak2 and the
local curvature k can be calculated as k = 8xss8 = cs. In contrast to
previous studies that assume a uniform bending rigidity,9,41,55–61

we emphasize that here the bending rigidity is permitted to vary
spatially.

The hydrodynamics of slender bodies at low Reynolds
number is described by the resistive force theory (RFT) to
leading order,62–64 where the viscous force per unit length on
the body is linearly related to its local velocity:

fvis = �(x>nn + x8tt)�xt, (3)

where x8 and x> are the resistive coefficients in the tangential
and normal directions respectively. Although non-local hydro-
dynamic interactions are ignored in RFT, this local theory has
often proved effective in obtaining predictions in quantitative
agreement with experiments.8,9,36,58,62

Neglecting the inertia of the filament there is a local balance
between the viscous and elastic forces,

fvis + felastic = 0, (4)

which together with the local inextensibility condition result in
a set of coupled nonlinear partial differential equations governing
the evolution of the filament shape, x(s,t), in terms of tangent
angle c(s,t) and tensile force t(s,t):

ct ¼
1

x?
�@s3 Acsð Þ þ @s cstð Þ
� �

þ 1

xk
cs cs@s Acsð Þ þ ts½ �; (5)

tss �
xk
x?

cs
2t ¼ �@s cs@s Acsð Þð Þ �

xk
x?

cs@ss Acsð Þ: (6)

2.2 Boundary actuation

We consider here a filament where one end (s = 0) is oscillated
harmonically

y(0,t) = y0 sinot, (7)

with o denoting the oscillation frequency.36,37,52,58,59 The elasto-
hydrodynamic response of the filament varies depending on the

Fig. 1 Schematic diagram of a displacement-driven cantilevered filament
and notation.
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tethering mechanism of the filament, whether it is cantilevered:
c(0,t) = 0 (Sections 3.2 and 3.3), hinged: cs(0,t) = 0 (Section 3.4), or
connected to other devices such as a torsional spring (Section 3.1).
These different scenarios at the actuation end will be analyzed in
subsequent sections.

At the free end (s = L), the filament is force-free and torque-
free:

Fext(L) = [tt � qs(Ak)n]s=L = 0,

Text(L) = [Ak]s=L = 0, (8)

where the expressions for external forces and torques arise as
boundary terms in the variational calculation.65 The propulsive
force generated by the boundary actuation can be obtained by
integrating the viscous force along the filament averaged over a
period of actuation,

Fp ¼ � ex �
ðL
0

fvisds

� �
; (9)

where the angle brackets represent time averaging over an
oscillation period.

We consider here small amplitude oscillations, e = y0/L { 1,
where deformations may be assumed to be periodic and we
determine the filament shape asymptotically, order by order.
For small amplitude oscillations, we write the net propulsive
force as a regular series expansion in e, Fp = e2F(2)

p + O(e4) (the odd
powers vanish due to the e - �e symmetry) and upon substitu-
tion of eqn (3), assuming a continuous stiffness A(s), we obtain

F ð2Þp ¼
x? � xk

x?

ðL
0

cð1Þ@s2 A@scð1Þ
� �

ds

� �
; (10)

where c(s,t) = ec(1) + O(e2).
We now non-dimensionalize the governing equations with

respect to a length scale L, time scale o�1 and a force scale
L2x>o. Dimensionless groups obtained include the dimension-
less oscillation amplitude e = y0/L, the drag anisotropy ratio
g = x>/x8, and the sperm number Sp = L(x>o/A0)1/4 where A0 is
a characteristic magnitude of the bending stiffness. Unless
otherwise noted we scale stiffness by the value at the driven
end, A0 = A(0), and introduce a dimensionless bending stiffness
A(s) = A(s)/A(0). In the limit of an infinitely slender filament,
L/r - N, the drag anisotropy ratio g = 2, which is the value
adopted in this work. The sperm number Sp compares the
magnitude of characteristic viscous and elastic forces. For a
given oscillation frequency o and length of the filament L, a
larger Sp indicates a more flexible material and Sp - 0 tends to
a rigid filament. Hereafter, we shall work with dimensionless
variables while adopting the same notation introduced above.

3 Results and discussion

For the classical case of a uniform bending stiffness along the
filament,5,35–37 A = 1, the propulsive force varies non-
monotonically as a function of the sperm number as shown
in Fig. 2 (red dashed line). At low Sp, the filament tends to a
rigid rod undergoing a reciprocal motion that produces zero

net propulsive thrust. For finite values of Sp, flexibility enables
the propagation of deformation waves along the body and the
generation of a net propulsive force. At large Sp, the dominance
of viscous forces over elastic forces suboptimally localizes
filament deformation around the actuation end, leaving a
considerable portion of the filament undeformed and not
contributing to propulsion. The propulsive force hence exhibits
a maximum around an intermediate sperm number Sp E 1.89,
leading to a maximum propulsive thrust of F(2)

p = 0.19625.

3.1 Localized flexibility: via a torsional spring

Before studying various spatially varying flexibility distributions
in later sections, we first investigate a localized flexibility
arrangement via a torsional spring, which was reported to
optimize propulsive thrust at high Reynolds numbers.52 We
ask the question: is torsional spring also the optimal flexibility
arrangement at low Reynolds number?

We consider a rigid filament connected by a torsional spring
with a spring constant C at the actuation end. In this case the
local tangent remains the same along the rigid filament, c(t) =
ec(1) + O(e2), and the torque balance of the entire filament reads

ez �
ð1
0

xðs;tÞ � xð0;tÞ½ � � fvisds� Kc ¼ 0; (11)

where K = C/L3x>o is the dimensionless spring constant.
Similar to the sperm number Sp, the dimensionless spring
constant K measures the magnitude of the elastic force com-
pared with the viscous force. The above torque balance exactly
simplifies to Kc + ct/3 + e cosc cos t/2 = 0. At leading order in e,
we have

1

3
cð1Þt þ

1

2
cos tþ Kcð1Þ ¼ 0; (12)

Fig. 2 Red: propulsive force generated by a displacement-driven cantilevered
filament of uniform bending stiffness. The maximum propulsive force here
is F(2)

p = 0.19625. Blue: propulsive force generated by a torsional spring
arrangement at the actuation end connected to a rigid filament as a function
of the spring constant. The maximum propulsive force here is F(2)

p = 0.1875.
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with c(1)(0) = 0. The periodic (or long time) solution is given by

cð1ÞðtÞ ¼ � 3

2þ 18K2
3K cos tþ sin tð Þ: (13)

Using this result we obtain a simple analytical expression for
the dimensionless propulsive force,

F ð2Þp ¼
g� 1

g
9K

4 1þ 9K2ð Þ: (14)

The non-monotonic variation of the propulsive force as a
function of the dimensionless spring constant is shown in
Fig. 2 (blue solid line) and the optimal propulsive force F(2)

p =
0.1875 occurs at K = 1/3. These results can be understood by
considering the horizontal force (propulsive thrust) that results
from vertically moving a rigid filament inclined at an angle c,
which scales as fprop B cosc sinc to leading order,5 while the
extrema of the thrust occur at c = �451, which implies that the
more time a rigid filament is inclined around these optimal
angles during an oscillation the larger the resulting net propulsive
force. For the torsional spring arrangement, the average tangent
angle over a peak-to-peak stroke is given by 9K/(p(1 + 9K2)),
which has a maximum of 3/(2p) (E271) occurring at K = 1/3.
This explains the occurrence of the optimal propulsive force at
K = 1/3 and as K deviates from this optimal value, the average
tangent angle decreases leading to suboptimal propulsion.

However, we emphasize that the maximum possible propulsive
thrust obtained via this torsional spring arrangement (F(2)

p = 0.1875)
is indeed smaller than that given by the optimal uniform stiffness
configuration (F(2)

p = 0.19625, see Fig. 2 for comparison). Therefore
we obtain the conclusion: despite the superiority of the torsional
spring arrangement in high Reynolds number propulsion,52 such a
localized flexibility arrangement is suboptimal at low Reynolds
number compared with the optimal uniform stiffness.

3.2 Continuous stiffness distributions

In this section we explore the possibility of maximizing the
propulsive performance with a continuously variable stiffness.
Using eqn (5) and (6), at order e we have

Sp4qtc
(1) + qs

3(Aqsc
(1)) = 0. (15)

Assuming periodic solutions,

c(1) = <{eith(s)}, (16)

where < indicates the real part of a complex quantity, we
numerically solve the resulting ODE for h(s), from which the
propulsive force can be evaluated using eqn (10) with numerical
integration for a given stiffness profile A(s) (see ESI† for
details).

Following the studies by Moore52 in the high Reynolds
number regime, we optimize the propulsive force with a linear
and quadratic distribution of bending stiffness. We also explore
an exponentially decreasing stiffness distribution as considered
by Maier et al.11 at low Reynolds number.

For both linear and quadratic distributions, given by A(s) =
as2 + bs + 1, we optimize numerically over the parameter space
(Sp, a, b) with the constraint of positivity: Sp 4 0, A(s) 4 0 for

any s A [0,1). In both cases the optimization routine points to a
limiting scenario of a vanishing bending stiffness at the free
end (see ESI† for details). The optimal linear and quadratic
distributions are shown in Fig. 3, which improve the propulsive
performance respectively by 2.5% and 8.2% compared with the
optimal uniform stiffness. We also find that an optimal expo-
nentially decaying stiffness, A(s) = exp(as), can further increase
the propulsive thrust by 13.5% compared with the optimal
uniform stiffness case in our displacement-driven boundary
setup. The optimal exponential profile (Sp E 0.1, a E �20) is
shown in Fig. 3. All these optimal distributions display the
advantage of decreasing stiffness from the driven end to
enhance propulsion under the current boundary actuation.

3.3 Segmented stiffness distributions

We have demonstrated that for a displacement-driven actua-
tion at the cantilevered end of the filament, allowing the
bending stiffness to vary continuously along the entire filament
leads to improved propulsive performance compared with any
uniform stiffness. Despite the observed enhancement, the
polynomial and exponential distributions studied may not
necessarily be ideal candidates to begin with. We explore in
this section stiffness distributions with jump discontinuities,
i.e., a step-function distribution, for enhancing the propulsive
thrust because such segmented flexibility arrangements may be
easily implemented experimentally by simply serially connecting
filaments with different stiffnesses as diagrammed in Fig. 4(b).
Recently, fish-like foil models with segmented flexibility distri-
butions have also been constructed and experimentally shown to
enhance swimming at high Reynolds number.53

We assume different flexibilities for the segments at the actuation
end, A1, and the distal end, A2, with the ratio of stiffness denoted as
b = A2/A1. The length of the segment with stiffness A1 relative to that
of segment with stiffness A2 is denoted as a A [0,1] (Fig. 4(b)).

In this case, the local tangent c(s,t) and tensile force t(s,t)
are split into two separate functions for the two segments, with

Fig. 3 Optimal linear (Sp E 1.77, a = 0, b = �1, F(2)
p E 0.2012), quadratic

(Sp E 1.64, a = 1, b = �2, F(2)
p E 0.2124) and exponential stiffness

distributions. The lines are labeled with the percentage of enhancement
in the propulsive force compared with the case of the optimal uniform
bending stiffness.
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c(n)
k denoting the tangent angle of the k-th segment (k = 1, 2) at

O(en). Noting that cB e, from eqn (5) and (6) one can show that
tB e2 (see ref. 66). If both A1 and A2 are finite, the leading order
equations of motion are written as

Sp1
4qtc

(1)
1 + qs

4c(1)
1 = 0, (17)

Sp2
4qtc

(1)
2 + qs

4c(1)
2 = 0, (18)

where Sp1 = L(x>o/A1)1/4 is the sperm number of the material at
the driven end, Sp2 = L(x>o/A2)1/4 is the sperm number of the
material at the free end, and b = (Sp1/Sp2)4. Again we take c(1)

k =
<{hk(s)eit}, and solve the corresponding ordinary differential
equations for hk(s).

The boundary conditions at the two ends are given by

c(1)
1 (0,t) = 0, qs

3c(1)
1 (0,t) = �Sp1

4 cos t,

qsc
(1)
2 (1,t) = 0, qs

2c(1)
2 (1,t) = 0. (19)

At the connecting point, the continuity of tangent angle, inter-
nal force and torque result in the conditions

c(1)
1 (a,t) = c(1)

2 (a,t), qsc
(1)
1 (a,t) = bqsc

(1)
2 (a,t)

qs
2c(1)

1 (a,t) = bqs
2c(1)

2 (a,t), qs
3c(1)

1 (a,t) = bqs
3c(1)

2 (a,t). (20)

After separation of variables the resulting ordinary differential
equations for hk can be solved by

hkðsÞ ¼
X4
n¼1

cn exp lnsð Þ; (21)

where k = 1, 2 and the constants cn can be solved by imposing
the boundary conditions above.

Once the deformation along the segments is obtained, the
leading order propulsive force is then given by

F ð2Þp ¼
g� 1

2gSp14
@sc

ð1Þ
1 ð0; tÞ

� �2
� @sc

ð1Þ
1 ða; tÞ

� �2
þb @sc

ð1Þ
2 ða; tÞ

� �2� �
:

(22)

We perform a three parameter optimization of the propulsive
force over the parameter regime Sp1, Sp2 A (0,10] and a A [0,1].
We find optimal values of Sp = 1.7189, Sp = 10 and a = 0.8224
that yield a propulsive thrust that is 37% better than the optimal
uniform case. Further enhancement can be found by extending
this search domain, and the trend is that the flexibility of the
second segment (Sp2) increases while its length decreases; how-
ever, the assumption of small amplitude deformation and local
hydrodynamics become invalid at large sperm numbers and
thus we conservatively restrict our parameter regime. Moreover,
we expect this limiting behavior to be regularized by the inclu-
sion of non-local hydrodynamics67 or by dissipation internal to
the hybrid filament not accounted for in the current model.60

Such a global optimization is beyond the scope of this work;
nevertheless, the relatively simple segmented arrangement
already displays significant enhancement within the parameter
space considered.

In Fig. 4(a), the propulsive thrust generated by a driven
filament of uniform bending stiffness is displayed again. The
two specific sperm numbers: Sp = 1.7189 (black dot in Fig. 4a)
and Sp = 10 (gray dot in Fig. 4a), both generate suboptimal
propulsive forces in a uniform filament. For Sp = 1.7189, the
interplay of viscous and elastic force leads to deformation along
the filament (see inset in Fig. 4a) that generates a close-to-
optimal propulsive force; however, for the larger sperm number

Fig. 4 (a) Propulsive thrust generated by a cantilevered filament of uniform bending stiffness under a displacement actuation. The two dots (black and gray)
indicate two filaments with different bending stiffnesses A1 and A2, or Sp = 1.7189 and Sp = 10. The corresponding insets display filament deformations over
one period at different times np/4, where n = [2, 3,. . .9] with the amplitude e = 0.1; the color of the line goes from dark to bright as time advances.
(b) Propulsive thrust generated by a two-segment filament with Sp1 = 1.7189 and Sp2 = 10 as a function of a. The maximum propulsive force generated by this
segmented stiffness profile (with a = 0.8224) is 37% greater than the maximum achievable thrust of a filament with any uniform stiffness. The corresponding
filament deformations are displayed as an inset in the same manner described in (a). The blue dots indicate numerical results using a regularized hyperbolic
tangent function that approximates a step-function stiffness distribution.
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Sp = 10, the filament deformation becomes localized near the
actuated end, leaving a substantial portion of the filament
undeformed and hence contributing little to the propulsive
force (inset in Fig. 4a). Instead, serially connecting segments
with these two sperm numbers leads to non-trivial variations of
the propulsive force (Fig. 4b).

In Fig. 4(b), we see that by tuning the relative portion of the
two segments a A [0,1], one can indeed obtain a propulsive
thrust that is 37% better than the optimal uniform case at
a = 0.8224. Such an enhancement is not achievable by any
continuous stiffness distributions considered previously. The
optimal hybrid filament (see the inset in Fig. 4b) contains a
relatively large portion at nearly the optimal uniform value and
so deforms throughout its length while also exploiting a
localized deformation at its tip to generate a large propulsive
force that neither stiffness can achieve alone. We emphasize here
that segmented flexibility distributions maximizing propulsion
also display a decreasing stiffness (a stiff leading segment followed
by a softer segment), consistent with the previously observed trend.

To better visualize the landscape of the propulsive force, we
present a contour plot of the propulsive force (Fig. 5) as a
function of Sp2 and a while fixing the sperm number of the
leading segment at Sp1 = 1.7189. For a given value of Sp2, one
can in general determine an optimal relative proportion of the
segment a to maximize the propulsive force while the optimal
value over the whole domain is found on the upper Sp2

boundary.
Again we note that one may improve the propulsion of a two-

segment elastic filament by searching over a wider parameter
regime or even by looking at optimal three-segment and four-
segment elastic filaments but this results in exceedingly small
and flexible pieces at the end, unrealistic for experimental
fabrication and severely constraining our assumption of small
amplitude deformations.

Finally, the segmented distribution (or step-function distri-
bution) may be reconstructed by a continuous hyperbolic
tangent distribution: A(s) = a + b tanh[(s � a)/d], where d { 1
is a parameter regularizing the sharp transition between the
two distinct bending stiffnesses. The parameters a, b are
determined by satisfying A(0) = 1, A(1) = b. Using the formula-
tion in Section 3.2 and the regularization parameter d = 0.003,
one obtains effectively the same results (represented by blue dots
in Fig. 4b) as the segmented distribution.

3.4 Effects of boundary actuation mechanisms

For a displacement-driven cantilevered filament, we observed a
trend that by incorporating a spatially decaying stiffness one
can potentially enhance propulsive performance and this result
seems to be consistent with the experimental observations
obtained by Maier et al.,11 where a flagellar bundle with an
exponentially decaying stiffness under a rotational actuation
was found to exhibit a larger swimming speed than the uniform
stiffness case. However, we shall show in this section that
optimal flexibility distribution significantly depends on the
boundary condition. Therefore, one cannot simply extend the
results by Maier et al.11 and this work to other scenarios where
the actuation mechanism may differ.

We demonstrate that by only changing the tethering condi-
tion from a cantilevered filament to a hinged filament at the
actuation end, a qualitatively different trend regarding the
optimal flexibility distribution will be obtained. Specifically,
we consider a boundary driven passive filament where one end
is under torque-free harmonic oscillation while the other end is
free.59 At the actuation end (s = 0), we have

y(0,t) = e sin t, Text(0) = �[Ak]s=0 = 0, (23)

from which we obtain that cs(0,t) = 0.
Following the cantilevered case, we investigate a two-

segment filament undergoing small-amplitude displacement
oscillation. The governing equations for c(1)

1 and c(1)
2 are the

same as those obtained for a cantilevered filament, but with
different boundary conditions at the driven end. The leading
order propulsive force is given by

F ð2Þp ¼
1� g
gSp14

cð1Þ1 ð0; tÞ@s2c
ð1Þ
1 ð0; tÞ

D

þ 1

2
@sc

ð1Þ
1 ða; tÞ

� �2
�b @sc

ð1Þ
2 ða; tÞ

� �2� 	�
;

(24)

which, when b = 1, reduces to the case of uniform bending
stiffness along the filament and the propulsive force as a
function of Sp is shown in Fig. 6(a).66 For illustration we
consider two bending stiffnesses (corresponding to two differ-
ent sperm numbers Sp = 3.5 and Sp = 5.006) that lead to the
same propulsive thrust (F(2)

p = 0.09, denoted by blue dots in
Fig. 6a). For these two uniform cases, the interplay of viscous
and elastic force leads to deformation along the filament (see
inset in Fig. 6a) that generates a suboptimal propulsive force.
With these two bending stiffnesses, two possible configurations
of a two-segment filament can be constructed: (i) a more

Fig. 5 Contour plot of the propulsive force generated by a two-segment
filament as a function of Sp2 and a at Sp1 = 1.7189. Contour lines of equal
propulsive forces are labeled by their values.

Paper Soft Matter



This journal is©The Royal Society of Chemistry 2017 Soft Matter, 2017, 13, 2339--2347 | 2345

flexible segment at the actuation end (b = 4.18, dashed line
in Fig. 6b) and (ii) a more flexible segment at the free end
(b = 0.24, solid line in Fig. 6b).

Similar to the cantilevered case, the propulsive thrust varies
non-monotonically with the relative portion of the two seg-
ments a in both cases, and the propulsive thrust yields the
uniform stiffness value (F(2)

p = 0.09) in the limits a - 0, 1
(horizontal dash-dotted line in Fig. 6b). However, unlike the
case of a cantilevered filament, where putting a more flexible
segment at the free end is favorable for propulsion enhance-
ment, for a hinged filament the opposite is true: a more flexible
segment at the actuation end (b = 4.18, dashed line) generates a
propulsive thrust greater than the maximum possible thrust
with uniform bending stiffness. The optimum propulsive force
generated by this arrangement is indicated by a blue dot on the
curve and the corresponding filament deformation is displayed
in the inset in Fig. 6(b). The other configuration (b = 0.24, solid
line) does not outperform the optimal uniform stiffness case.
As an additional example, one can show that an exponentially
increasing stiffness can improve the propulsion of a hinged
filament compared with the optimal uniform case, in contrary
to the case of a cantilevered filament and the rotational actuation
case by Maier et al.11 These qualitatively different behaviors
demonstrate the significant dependence of the optimal configu-
ration on the boundary actuation mechanism.

4 Conclusion

In this paper, we have presented an analytical and numerical
investigation on enhancing propulsion of a boundary-driven

filament by way of spatially variable flexibility along the filament
in the asymptotic limit of small-amplitude oscillations. First, we
demonstrated that the torsional spring configuration, which
maximizes propulsive thrust in the high Reynolds number
regime, does not outperform the optimal uniform stiffness in
the low Reynolds number regime. Second, specific continuous
and segmented flexibility distributions that generate propulsive
thrusts greater than the maximum achievable by any uniform
stiffness filament were determined. Third, the specific examples
considered in this work suggest that for the case of a cantilevered
filament it is favorable to have decreasing stiffness towards the
free end, consistent with recent findings regarding enhanced
propulsion using a flagellar bundle with an exponentially
decreasing stiffness profile under rotational actuation;11 how-
ever, we emphasize that the favorable flexibility distribution
depends significantly on the precise boundary condition at the
actuation end. As an example, a hinged filament prefers more
flexibility at the actuation end instead. To conclude, we have
shown that both the fluid physics (Reynolds number) and
mechanical tethering condition can qualitatively modify the
optimal flexibility arrangement of a driven filament. Therefore,
there is no general design rule for the optimal flexibility dis-
tribution, which instead must be determined on a case by
case basis.

The enhancement of propulsion revealed by our study may
be useful for the development of synthetic microscopic swimmers
requiring large propulsive force for the delivery of therapeutic
payloads,9,68 penetrating complex media14,69 or clearing clogged
arteries.13,70 A method for fabricating filaments with spatially varying
stiffness has already been developed using DNA self-assembly as
reported by Maier et al.11 In addition, multi-segmented hybrid

Fig. 6 (a) Propulsive thrust generated by a filament of uniform bending stiffness under a torque-free displacement actuation.66 The two blue dots
indicate two filaments with different bending stiffnesses Sp = 3.5 and Sp = 5.006 generating the same propulsive force. The corresponding insets display
filament deformations over one period at different times np/4, where n = [2, 3,. . .9] with the amplitude e = 0.1; the color of the line goes from dark to
bright as time advances. (b) Propulsive thrust generated by two-segment filaments as a function of a at different values of stiffness ratio b. For b = 4.18
(A2 4 A1, more flexible material at the actuation end), the maximum propulsive force generated is greater than the maximum achievable thrust of a
filament with any uniform stiffness. The corresponding filament deformations are displayed as an inset in the same manner described in (a).
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nanostructures may be synthesized by chemical vapor deposition
and electrodeposition methods,71 and these proposed theoretical
designs may prompt new experimental implementations.

As a first step to probe the difference between a filament
with non-uniform stiffness versus one with uniform stiffness,
the stiffness is varied through modifying the elastic modulus.
We note that the flexibility distribution can also change by
varying the geometry of the cross-section along the filament. This
however complicates the physical picture since any variation in
stiffness is then also accompanied by changes in hydrodynamic
stresses which may lead to further enhancement (or reduction) of
propulsion and is a logical next step for analysis.
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