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A B S T R A C T

Particle motion in non-Newtonian fluids can be markedly different than in Newtonian fluids. Here we look at the
change in dynamics for a few problems involving rigid spherical particles in shear-thinning fluids in the absence
of inertia. We give analytical formulas for sedimenting spheres, obtained by means of the reciprocal theorem,
and demonstrate quantitatively the differences in comparison to a Newtonian fluid. We also calculate the first
correction to the suspension viscosity, the Einstein viscosity, for a dilute suspension of spheres in a weakly shear-
thinning fluid.

1. Introduction

Particles in fluids are ubiquitous in both natural and industrial
processes. Blood, detergents, paints, aerated drinks, fibre-reinforced
polymers, sewage sludges, and drilling muds are some examples where
particles —rigid or drops or bubbles— are present in a suspending fluid
[1,2]. The flow behaviour and rheological properties of such suspen-
sions depend on parameters like the particles’ shape, size and con-
centration, particle-particle interaction, particle surface properties,
fluid rheology and the type of flow. Even the simplest of such suspen-
sions – small, rigid non-Brownian particles in a Newtonian fluid – ex-
hibits rich rheological properties like shear-thinning, shear-thickening,
and normal stress differences which are characteristics of complex
fluids [3,4]. In many common examples like paints, foods, fracking
fluids and biological suspensions, the suspending fluid itself is non-
Newtonian. The properties of these suspensions is therefore expected to
be even more complex [5–7].

In order to understand the properties of these suspensions, it be-
comes imperative to first understand the interaction of a single particle
with the surrounding media and the mutual interaction between two
such particles. In fact, it is known that the motion and orientational
dynamics of particles can be strongly affected by the rheology of the
surrounding fluid medium [8–12]. For example, at zero Reynolds
number, while the center-to-center distance between two equal sphe-
rical particles which are sedimenting along their line of centers through
a quiescent fluid is fixed indefinitely at its initial value in a Newtonian
fluid [13], this distance is found to change in the presence of viscoe-
lasticity of the fluid medium [14]. The understanding of particle dy-
namics in complex fluids is also important for applications in particle
manipulation in microfluidic devices (see recent reviews [15,16]).

Phenomena like cross-stream migration, in which rigid spheres in a
pressure-driven tube flow of viscoelastic liquid migrate either towards
or away from the wall in the absence of inertia, can be used for cell-
trapping in biomedical applications [17].

Towards a fundamental understanding of particle dynamics in non-
Newtonian fluids, in this work, we theoretically study the dynamics of
rigid non-Browinian spherical particles in shear-thinning fluids in the
absence of any fluid or particle inertia. Unlike for viscoelastic fluids,
where theoretical studies have been used to develop insights for many
experimental observations [9,11], similar studies have been relatively
few in shear-thinning fluids and most of these studies have focussed on
using the power-law model [18] to model the shear-thinning rheology
[2]. However, as argued by Chhabra et al. [19], Chhabra and Uhlherr
[28] and Chhabra [2], a fluid model with a zero-shear viscosity should
be preferred to the power-law model for slow flows around spheres.
Here we use the Carreau model for shear-thinning fluids [18] (discussed
in the subsequent section) to study the following problems motivated
by some recent experiments:

i) Two equal spherical particles sedimenting along their line of centres
through a quiescent fluid. In Newtonian fluids, Stimson and Jeffery
[13] showed that the initial distance of separation is maintained as
the particles sediment.

ii) Sedimentation of a spherical particle which is also rotating due to
some external field. In Newtonian fluids, the sedimenting velocity
does not depend on the rotation rate. The translational and rota-
tional motion for a sphere are decoupled in a Newtonian fluid [20].

iii) Sedimentation of a spherical particle in a linear background flow. In
Newtonian fluids, the sedimenting velocity of a sphere depends
only on the (local) velocity of the background flow but is
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independent of the velocity gradient.
iv) The influence of particles on the viscosity of a shear-thinning fluid.

For a dilute suspension of neutrally buoyant particles in a
Newtonian fluid, it was shown by Einstein [21] that the bulk shear
viscosity of the suspension increases due to the presence of parti-
cles.

In the following sections, we analyse these problems in shear-thin-
ning fluids in detail, but before that we briefly discuss our theoretical
approach and the rheology of shear-thinning fluids.

2. Reciprocal theorem

We are interested here in the motion of, or equivalently forces on,
particles in complex fluids. These integrated quantities can be evaluated
without resolution of the associated flow field of the complex fluid by
employing the reciprocal theorem. This approach was comprehensively
reviewed by Leal [10], and we use here a generalized formalism de-
veloped in a number of recent papers for active particles [22–25].
Following Elfring [25], the motion U or forces F of N particles in a
complex flow may be given by

U R F F FFU
̂= − + +

−η
η

·[ ],T NN
1

(2.1)

where U = U Ω[ ], F = F L[ ] are 6N-dimensional vectors comprising
translation and rotation, and hydrodynamic force and torque respec-
tively on N particles. If the inertia of the particles is negligible (small
Stokes numbers), as we will assume here, then the hydrodynamic force
must balance any external or applied force (such as weight due to
gravity) F F= − ext . The force

B
F TU̂ ∫= −

∂
∞u u n

η
η

S( )·( · ) d ,T
S

(2.2)

is a Newtonian ‘thrust’ due to any surface deformation or activity of the
particles uS (although in all cases here we consider rigid passive par-
ticles, =u 0S ) and ‘drag’ from any background flow u∞. Here B∂ re-
presents the surfaces of all the particles. The non-Newtonian con-
tribution

V
F EU∫= − ′τ V: d ,NN NN (2.3)

represents the extra force/torque on each particle due to a non-New-
tonian deviatoric disturbance stress ′ = − ∞τ τ τNN NN NN in the fluid volume
V in which the particles are immersed.

The formulas rely on operators from an N-body resistance/mobility
problem in a Newtonian fluid (with viscosity ̂η )

E UU
 ′̂ = ′γ̇ /2 · , (2.4)

T UU
 ′ = ′σ · , (2.5)

F R UFU
 ′ = − ′· . (2.6)

where primes indicate disturbance quantities. The tensors EU andTU are
functions of position in space that map the (arbitrary) motion of all N
particles U to the fluid strain-rate and stress fields respectively, while
the N-body rigid-body resistance tensor

RFU
 
 = ⎡

⎣
⎢

⎤

⎦
⎥

R R
R R

.FU F

LU L

Ω

Ω (2.7)

We note that no specific U needs to be chosen in the rigid-body dual
problem as only the linear operators EU ,TU andRFU enter the picture. In
many cases there may be symmetries in the problem which simplify
these operators substantially, likewise we may know that the forces/
torques are in some way simplified (collinear with gravity for instance)
and hence need not even determine all components of the operators.

Components of E TU U
 , andRFU for a single sphere that we use in this

study are provided in the Appendix.

3. Shear-thinning fluid

As we outlined in the previous sections, the presence of a non-
Newtonian stress τNN can significantly alter the motion of particles in
flows. In this paper, we consider the effects of shear-thinning fluids,
which experience a loss in apparent viscosity η with increasing strain-
rates γ̇ ; specifically, the deviatoric stress

=τ γη γ( ˙ ) ˙ , (3.1)

where the viscosity is modelled using the Carreau model for generalised
Newtonian fluids [18]

= + − +∞ ∞
−η γ η η η λ γ( ˙ ) ( )[1 ˙ ] .t

n
0

2 2 ( 1)/2
(3.2)

Here, η0 is the zero-shear-rate viscosity, η∞ is the infinite-shear-rate
viscosity, n is the power law index (n<1 for shear-thinning fluids;
smaller the value of n, more shear-thinning the fluid is) and λt is a time
constant. The magnitude of the strain-rate is given by =γ̇ (Π)1/2 where

= γ γΠ ˙ ˙ij ij is the second invariant of the strain-rate tensor. Note that
=→ η γ ηlim ( ˙ )γ̇ 0 0 and =→∞ ∞η γ ηlim ( ˙ ) ,γ̇ showing that at low and high

strain rates the fluid behaves like a Newtonian fluid with viscosity η0
and η∞, respectively. λt sets the cross-over strain-rates at which non-
Newtonian effects start to become important.

In this work, we investigate strain-rates such that ≪λ γ1/ ˙ ,t c where
γ̇c is the characteristic strain-rate of the flow. In this case it is useful to
write the constitutive equation in the form

= + −τ γ γη η γ η˙ ( ( ˙ ) ) ˙ .0 0 (3.3)

Although, we note that this rearrangement is not in any way restricted
to low strain rates. Writing the equation as such, it is clear that the non-
Newtonian contribution = −τ γη γ η( ( ˙ ) ) ˙NN 0 .

In dimensionless form, one may decouple the Newtonian and non-
Newtonian contribution for a Carreau fluid as

= + − + − + −τ γ β β Cu γ γ* ˙ * { 1 (1 )[1 ˙ * ] } ˙ *,n2 2 ( 1)/2 (3.4)

where stars (*) represent dimensionless flow quantities. The Carreau
number =Cu γ λċ t is the ratio of the characteristic strain rate in the flow
γ̇c to the crossover strain rate 1/λt. The viscosity ratio is given by

= ∈∞β η η/ [0, 1]0 . The characteristic length of the particle is chosen as
the length scale in the problems and as we consider only spherical
particles, the length scale is a, the radius of the particles. η γ̇c0 is the
scale for stresses; the appropriate characteristic strain-rate, γ̇ ,c varies
depending on the problem and therefore, is defined separately in each
of the problems below.

In this work, we consider the fluid behaviour to be weakly shear-
thinning, in the sense that Cu≪ 1 [26], and therefore the viscosity is
assumed to not deviate substantially from the zero-shear viscosity η0.
We then explore the leading-order weakly shear-thinning effects of the
fluid rheology on particle motion. To this end, we assume a regular
perturbation expansion of all fields, e.g. = + + …u u uCu ,0

2
1 and find

the non-Newtonian stress to be

O= − − − +τ γCu n β γ Cu* 1
2

(1 )(1 ) ˙ * ˙ * ( ),NN
2

0
2

0
4

(3.5)

where for shear-thinning fluids β<1 and n<1. We consider only the
leading-order effects of shear-thinning viscosity and by using (3.5), we
may obtain the non-Newtonian force on particles at the expense of an
integration (2.3) which then only requires the Newtonian flow field u0.

4. Sedimenting spheres

Due to their symmetry, a number of classic results involving motion
of spheres in Newtonian fluids can be predicted directly by employing
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the kinematic reversibility of the field equations and it is insightful to
consider examples where dynamics are altered (or not) by shear-thin-
ning rheology. In this section, we explore one such case of two spheres
sedimenting along their line of centres but before that, it is instructive
to first examine the simple case of a single sphere moving through a
shear-thinning fluid and to see how the force-motion relationship is
affected by the medium rheology.

4.1. Single sphere

The drag force on a sphere of radius a, moving with a velocity U in a
Newtonian fluid is given by = −F Uπaη6 (dimensional), where η is the
viscosity of the fluid. In a shear-thinning fluid with zero-shear rate
viscosity =η η,0 the drag force is expected to be less than the
Newtonian value. This is because one expects the apparent viscosity
around the sphere to decrease below η due to the strain-rates ensuing
from the motion of the sphere. Quantitatively, the drag force in shear-
thinning fluid can be evaluated using the reciprocal theorem. For a
single sphere, we expect this force to be co-linear with the velocity by
symmetry. Simplifying (2.3) we may write

V
E∫= − −F U τπη a V6 : d ,UNN0 (4.1)

where EU (such that E ̂ =γ U˙ /2 ·U ) is well known for a sphere trans-
lating in Stokes flow [27]. The integral above may be easily evaluated
to leading order as then the non-Newtonian stress depends only on the
solution of a translating sphere in a Newtonian fluid i.e. τNN[u0] (from
(3.5)). In dimensionless form we find the drag in a shear-thinning fluid
to be

= − ⎛
⎝

− − − ⎞
⎠

F U Uπ β n Cu* 6 * 1 1
2

(1 )(1 ) 942
2275

* .2 2
(4.2)

If we (sensibly) take as the characteristic strain-rate = Uγ a˙ /c then
=U e* is simply the unit vector in the direction of the motion (a con-

vention we use below). The term in the brackets is then an analytical
calculation of the drag correction factor (often given the symbol X in
the literature [28,29]) valid to O Cu( )2 .

We see that, as expected, the drag force on a sphere decreases in a
shear-thinning fluid as compared to a Newtonian fluid. It should be
noted that the reduction in drag below the Newtonian value is at odds
with the conclusions reached using the power-law fluid model which
predict an increase in the drag force [2] because (as argued in that
work) the power-law fluid model does not incorporate a zero shear-rate
viscosity which is important in modelling slow flows involving stag-
nation points and vanishingly small shear rates. In contrast, (4.2) pre-
dicts the reduction in drag observed in experimental results [28], and
qualitatively agrees with a variational estimate by Chhabra and Uhlherr
[28], and numerical results from Bush and Phan-Thien [29], which both
used the Carreau fluid model to characterise the fluid rheology.

It is straightforward to invert the drag force to obtain the velocity
given a prescribed external force (for example weight due to gravity in
sedimentation)

⎜ ⎟= ⎛
⎝

+ − − ⎞
⎠

U
F F

π
β n Cu

π
*

*
6

1 1
2

(1 )(1 ) 942
2275

*
(6 )

.ext ext2
2

2 (4.3)

In this case an appropriate strain-rate scale is = Fγ η a˙ /( )c ext 0
2 in which

case F*ext would be a unit vector.

4.2. Two spheres

We now consider sedimentation of two spheres of equal radii along
the line joining their centres. In a Newtonian fluid, one can use argu-
ments of kinematic reversibility and symmetry to find that the two
spheres will sediment with equal velocities and will maintain their in-
itial distance of separation [27]. Stimson and Jeffery [13] solved the
hydrodynamically equivalent problem of two spheres moving with a

constant velocity along their line of centres and calculated the flow field
and the forces on the spheres. When their radii are equal, it was found
that the forces on each of the two spheres are indeed equal but each less
than on single sphere moving in a quiescent fluid with the same velo-
city. Quantitatively, the force on either sphere can be written as

= −F Uπηa λ6 (dimensional), where λ is a coefficient which depends on
the separation between the two spheres [13]. λ→ 1 as the distance
between the two spheres approaches infinity, i.e. when the two spheres
do not interact hydrodynamically with each other. It was also found
that value of λ decreases as the distance between the two spheres de-
creases. However, the method of Stimson and Jeffery [13] could not be
applied to the case of two spheres in contact with each other. This case
was later solved by Cooley and O’Neill [30] who found =λ 0.645 (for
the two sphere touching case). These results and values of λ have also
been observed experimentally [20].

Non-Newtonian rheology can break kinematic reversibility and in-
deed viscoelasticity is known to change these results qualitatively.
Where in Newtonian fluids two equal sedimenting spheres maintain
their initial distance of separation, it was found in the experiments of
Riddle et al. [14] and analyses of Brunn [31] and Ardekani et al. [32]
that the two particles showed a tendency to aggregate in viscoelastic
fluids. This effect of normal stresses on particle dynamics has been
commented upon by Joseph and Feng [33].

In shear-thinning fluids, it was observed in the experiments of
Daugan et al. [34] that the two spheres would aggregate provided the
initial distance of their separation was smaller than some critical dis-
tance. Yu et al. [35], in their numerical study, argued that in fact this
tendency towards aggregation was due to thixotropy (memory of shear-
thinning) and the corridors of reduced viscosity in the wake of sedi-
menting particles lead to aggregation [34,36]. In the absence of
memory, the two spheres would maintain their initial distance of se-
paration [35]. Here, we theoretically study the equivalent problem of
two equal spheres moving with a constant velocity along their line of
centres, as considered by Stimson and Jeffery [13], but in a shear-
thinning fluid.

We use the reciprocal theorem to calculate the forces on the two
spheres. By (2.1) the force on the particles can be written generally as

F R U FFU

̂= − +

η
η

· .NN
(4.4)

For two equal spheres moving along their line of centres, by symmetry,
we expect all vectors in the problem to be collinear, which significantly
simplifies the more general problem of the motion of two spheres.
When the motion of two bodies is collinear (only translational motion is
considered), it is useful to decompose the motion into a mean velocity
U and relative velocity ΔU such that the velocity of each sphere may be
written as = +U U UΔ1 and = −U U UΔ2 . In this basis, the relevant
resistance/mobility problems for the reciprocal theorem are i) two
(equal) spheres translating with equal velocity along the line joining
their centres in a Newtonian fluid (corresponding to U as in this case

=UΔ 0) with solution by Stimson and Jeffery [13] and ii) two (equal)
spheres approaching each other with equal speed along the line joining
their centres in a Newtonian fluid with solution due to Maude [37] and
Brenner [38] (corresponding to ΔU as in this case =U 0). Note that one
requires two resistance/mobility problems for evaluating the force on
each of the two spheres. The resistance tensor for this problem is di-
agonal in the sense that in a Newtonian fluid mean translation leads
only to a mean force and likewise for relative force. The reciprocal
theorem given above leads to expression for mean and relative force in
a non-Newtowian fluid given by

V
E

̂ ∫= − −F R U τ
η
η

V· 1
2

: d ,F U UNN
0

(4.5)

V
E∫= −F τ VΔ 1

2
: d ,UNN Δ (4.6)
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where RF U is the (mean) translational resistance of the two spheres in a
Newtonian fluid and EU and E UΔ correspond to the strain-rate due to
mean and relative motion respectively (see Appendix for additional
details). Note that τNN is evaluated using the solution of the problem in
Newtonian fluids by Stimson and Jeffery [13] (from (3.5)).

Upon evaluation of (4.6), for weakly non-linear shear-thinning
fluids one finds that there is no relative force

=F 0Δ , (4.7)

meaning the forces on two equal spheres are equal in a shear-thinning
fluid as in a Newtonian fluid. Although we obtain this result only for a
weakly shear-thinning fluid, we expect this to be the case for all gen-
eralized Newtonian fluids, regardless of the parameter regime. The
reason is that the stress τNN maintains the symmetry of the Newtonian
problem while the Maude–Brenner problem (and thus the operatorE UΔ )
displays a mirror-image symmetry and therefore the integral over the
entire fluid volume must be zero. In fact, Brunn [8] briefly comments
on this property of generalized Newtonian fluids where results may
come out to be similar to Newtonian fluids.

As the force on the two spheres in a weakly shear-thinning fluid are
equal, two sedimenting spheres do not show any tendency to aggregate
in a shear-thinning fluid without memory, as was also found in the
numerical work of Yu et al. [35] discussed previously. We can further
calculate the force on each of the spheres, and compare it to the force
on a single sphere in a shear-thinning fluid from Section 4.1. Since there
is no difference in drag force, the mean in (4.5) represents the hydro-
dynamic drag on each sphere. The form of the force (dimensionless) is

O= + − − +F F eCu β n F Cu* * 1
2

(1 )(1 ) ( ),0
2 1 4

(4.8)

where F *0 is the force on each sphere in a Newtonian fluid [13]. Here
we have non-dimensionalised lengths with sphere radius a and stresses
with η0U/a where U is the magnitude of velocity of the spheres such
that =U e* . Both F *0 and the coefficient F1 obtained by evaluating the
integral in (4.5) numerically, depend on the ratio of the centre distance
between the spheres to their diameter, h/d, as shown in Fig. 1(a). Note
that F1 is positive, meaning the correction to drag force is in the di-
rection of the motion e and so the drag in a shear-thinning fluid is less
than in a Newtonian fluid. To contrast the results with the Newtonian
fluids case, we also plot the ratio of the magnitude of the force in a
weakly shear-thinning fluid (correct to O Cu( )2 ) to the drag in an
equivalent Newtonian fluid for same configuration in Fig. 1(b). This is
plotted in Fig. 1(b) for =Cu 0.1,2 =β 0.001 and =n 0.25.

We note that the ratio F/F0 is always less than 1 which shows that
the drag in a shear-thinning fluid is less than that in Newtonian fluid for
the same configuration. This is expected as the viscosity in a shear-
thinning fluid decreases with strain-rate leading to less drag on each
sphere when compared to in Newtonian fluid. But what is perhaps

surprising is the variation of force with distance between the two
spheres. We first note that as this distance becomes large, the drag
reduction on each sphere asymptotes to that on a single sphere in shear-
thinning fluid. The drag reduction when the two spheres essentially do
not interact hydrodynamically with each other is greater than for any
other distance of separation. Shear-thinning effects are maximum in
this configuration. When the spheres interact hydrodynamically the
effective strain rates are reduced (due to screening) and thus the drag
reduction on each is always lower than for a single sphere. On the other
end of the distances, we have the configuration when the two spheres
are in contact with each other. This, interestingly, is not the config-
uration to observe minimum shear-thinning effects. In fact, the
minimum shear-thinning effects or equivalently the maximum of the
ratio F/F0 is observed when the clearance between the two spheres is of
the order of their diameter i.e. when h/d≈ 2.35. We believe that this
nontrivial result may be due to the complex flow field around the
spheres, which also includes ring vortices, and its effect on the dis-
sipation rates [39].

5. Sedimentation of a rotating sphere

We now consider the case of a sphere which translates as well as
rotates in a shear-thinning fluid. The calculations are inspired by the
recent experimental work of Godnez et al. [40] who study the hydro-
dynamically equivalent problem of sedimentation of a rotating sphere
in a power-law fluid. By imposing a controlled rotation on a sedi-
menting sphere, Godnez et al. [40] measured the increase in the sedi-
mentation velocity, which could then be used to predict the values of
power law indices of the fluids. They considered rotation of the sphere
only about the sedimenting axis. Here we consider the problem more
generally.

Translation and rotation of a sphere in a Newtonian fluid are de-
coupled and owing to the linearity of the Stokes flow, one may super-
impose the solution of translation alone and rotation alone to get the
solution of a translating-rotating sphere in a Newtonian fluid. In other
words a sphere that rotates in a Newtonian fluid will sediment at the
same rate as when it does not rotate. This decoupling of translation and
rotation is not expected to hold in a non-linear fluid. We explore this for
a weakly shear-thinning fluid, again using the reciprocal theorem.

According to the reciprocal theorem, as before, we have

V
F R U EFU U


̂ ∫= − − τ

η
η

V· : d .NN
(5.1)

We non-dimensionalise length with the sphere radius, a, stresses by
η0U/a where U is the magnitude of velocity of the sphere and hence

=U e* . We consider a general angular velocity which in dimensionless
form, Ω*, is not necessarily a unit vector. Then from (5.1) we get

1 10 100 1000 100002.35
h / d

0.984

0.986

0.988

0.99

0.992

F 
/ F

0

Two Spheres
Single Sphere

1 10 100 1000 10000

h / d

3

4

5

6

7

8

F1
Two spheres
Single sphere

a)

Fig. 1. a) Variation of non-Newtonian drag F1 as a function of the distance of separation between the two spheres. b) Normalized drag as a function of this distance.
Note that the variation is non-monotonic and that drag reduction is minimized at h/d≈ 2.35.
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= − ⎧
⎨⎩

− − − ⎛
⎝

+ − ⎞
⎠

⎫
⎬⎭

F e I I Ω I Ω Ωπ Cu n β* 6 · 1
2

(1 )(1 ) 942
2275

552
385

[2 * * *] .2 2

(5.2)

In the absence of any rotation =Ω 0* , the force corresponds with (4.2)
as expected. With nonzero rotation, the drag force is further reduced
due to the additional strain-rate caused by rotation. When the rotation
is aligned with the translation, Ω∝U, for example when the axis of
rotation is aligned with gravity for a sedimenting sphere as in the ex-
periments of Godnez et al. [40], the drag force remains collinear with
U. When the rotation is not aligned with translation, a lateral force may
arise due to the term in the direction of the axis of rotation ∝(e ·Ω*)Ω*.
When the rotation is orthogonal to translation there is no lateral drift
and the change in the drag force due to rotation is twice that of when
the rotation is aligned with translation and so would maximize sedi-
mentation velocity for a given rotation rate. In the mobility problem for
a given external force F* ,ext a rotating sphere will sediment with a
translational velocity given by

⎜ ⎟= ⎧
⎨⎩

+ − − ⎛
⎝

+ − ⎞
⎠

⎫
⎬⎭

U
F

I F I Ω I Ω Ω
π

Cu n β
π

*
*

6
· 1

2
(1 )(1 ) 942

2275
*

(6 )
552
385

[2 * * *] ,ext ext2
2

2
2

(5.3)

where F*ext is a unit vector if the strain rate scale γ̇c is chosen as |Fext|/
(η0a2). On comparison with the experimental results, it is noted that
Godnez et al. [40] find a power law dependence of the sedimenting
velocity on the rotation rate, ∝ −U Ω ,n(1 ) across a range of rotation
rates such that strain-rate around the sphere is predominantly due to
rotation and not due to translation, our analytical result in Eq. (5.3),
valid for small Carreau numbers, draws a similar picture, namely, in-
creasing the rotation rate and decreasing the power-law index, n, in-
crease the sedimentation velocity of the sphere.

We also calculate the hydrodynamic torque on the particle

= − ⎧
⎨⎩

− − − ⎛
⎝

+ − ⎞
⎠

⎫
⎬⎭

L Ω I Ω I I eeπ Cu n β* 8 *· 1
2

(1 )(1 ) 24
5

* 414
385

[2 ] .2 2

(5.4)

The first term in the shear-thinning correction is due to the particle
rotation alone as there is a reduction in the torque due to the shear-
thinning caused by the rotation. The second term in the correction is
due to both the translation and rotation of the sphere and may generate
a torque which is not aligned with the direction of rotation. Clearly, in a
shear-thinning fluid translational and rotational dynamics are coupled.

6. Sphere under an external force in a linear flow of shear-
thinning fluid

We now consider the dynamics of a spherical particle driven by an
external force in an unbounded linear-flow. In a Newtonian fluid, we
know that the sedimenting velocity of a sphere is not altered by the
velocity gradient in simple shear flow. However, this may not be the
case in non-linear fluids. In fact, in viscoelastic fluids, it is found that
the terminal velocity of a sphere decreases when the applied shear-flow
is perpendicular to gravity in what is called a cross-shear-flow [41–43].
Gheissary and van den Brule [44] used sedimentation of a sphere in
cross-shear flow to predict the rheological properties of different shear-
thinning fluids. The cross-shear flow is a model system used for trans-
port of particles in hydraulically-induced fractures [45]. Einarsson and
Mehlig [46] recently extended the analyses in viscoelastic fluids to the
case when gravity (or another external force) and the vorticity direction
of the applied flow are not aligned. Here, we perform a similar analysis
for a shear-thinning fluid.

Using the reciprocal theorem we calculate the velocities (both ro-
tational and angular) of the particle as

B V
U R F T EFU U U

 ̂
̂ ∫ ∫= ⎡

⎣⎢
− − ′ ⎤

⎦⎥
−

∂
∞u n τ

η
η

η
η

S V· ·( · ) d : d ,ext NN
1

(6.1)

where F = F[ 0]ext ext
T . Here, Fext is an arbitrary external force acting on

the particle. The particle is immersed in a 2D linear flow given by
=∞ ∞u A x* *· * (dimensionless). In a Cartesian basis we may write

=
⎡

⎣
⎢
⎢

+ −
− − − +

⎤

⎦
⎥
⎥

∞A
λ λ
λ λ*

1 1 0
(1 ) (1 ) 0

0 0 0 (6.2)

where we have scaled length with the radius of the sphere and stresses
with η γ̇ ,o c where γ̇c is characteristic of the applied strain-rate such that
we have A∞* in the form above. It is useful to also decompose

= + ×∞ ∞ ∞u γ x Ω x* ˙ *· * * *1
2 into symmetric and antisymmetric parts

associated with strain-rate and rotation-rate respectively. Note that
= −λ 1 corresponds to purely rotational flow, =λ 0 is shear flow and
=λ 1 extensional flow [47].
On evaluating (6.1) we get the translational velocity of the particle

= ⎧
⎨⎩

+ − − ⎡
⎣⎢

+ + ⎤
⎦⎥

⎫
⎬⎭

∞ ∞ ∞* * *U I
F

I I γ γ
F

Cu β n
π

γ
π

* 1
2

(1 )(1 ) 942
2275

*
(6 )

695
539

˙ 10037
7007

˙ · ˙ ·
*

6
.ext ext2

2

2
2

(6.3)

The first two terms on the right hand side correspond to the velocity
due to an external force in an otherwise quiescent shear-thinning fluid
as in (4.3). The remaining terms demonstrate the coupling between the
background flow field and external force. When the force is perpendi-
cular to the plane of applied flow, we see that the velocity of the par-
ticle is further increased above its quiescent fluid value due to the
thinning of the fluid by the external flow field. However, interestingly,
for any general direction of the external force, the velocity of the par-
ticle may not be in the direction of the forcing. This is due to the lack of
symmetry of the background flow field in one direction. It is also worth
noting that for a purely rotational flow, one does not see a shear-
thinning effect arising from the background flow.

Using (6.1) we also evaluate the angular velocity of the sphere,
which is given by

= + − − ⎡
⎣⎢

× ⎤
⎦⎥

∞ ∞Ω Ω
F

γ
F

Cu β n
π π

* * 1
2

(1 )(1 ) 3189
4004

*
6

˙ *·
*

6
.ext ext2

(6.4)

Note that in the absence of any forcing the sphere rotates with just the
background angular velocity just like in a Newtonian fluid where the
angular velocity of the sphere in a background flow is independent of
viscosity. This was also found in the numerical simulations of D’Avino
et al. [48]. Also, if the external force is along any of the principal di-
rections of strain, or the background flow is purely rotational, the an-
gular velocity of the sphere will be just due to the rotational component
of the background flow. However, for an arbitrary direction of the ex-
ternal force, the angular velocity may be different than that imposed by
background flow field.

7. Suspension of spheres in a shear-thinning fluid

Suspensions of particles in shear-thinning fluids are encountered in
a wide range of chemical, biochemical and material processing in-
dustries, and as such there has been considerable interest in studying
the flow properties of such suspensions [49–54]. Most of these studies
consider particles in power-law fluids, in other words, it is assumed that
the strain-rates are large enough so that the fluid rheology is captured
by a power law model. Here, we complement these studies by quanti-
fying the first effects of the non-Newtonian rheology of the suspending
fluid in the realm of small strain-rates.

We calculate the average stress in a dilute suspension of neutrally
buoyant rigid spheres in a weakly shear-thinning fluid, subject to a
linear background flow

=∞ ∞u A x* *· * (7.1)

as discussed in the previous section. The average stress in a suspension
of rigid spheres in a weakly shear-thinning fluid, correct to O Cu( ),2 is
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evaluated as

 = − − − +σ γ γ σCu β n γ* ˙ * 1
2

(1 )(1 ) ˙ * ˙ * * ,p
2 2

(7.2)

where σp is the additional stress within the suspended particles, and the
average quantities (denoted with angular brackets) are obtained by
taking an ensemble average over all possible configurations of the
particles [55–57]. We use the wide hat symbol ^ to refer to the sym-
metric and deviatoric component of a second-order tensor and note that
the isotropic terms in the average stress do not contribute to suspension
rheology [57,58]. In a homogeneous and dilute suspension of particles,
we know

 =σ Sn* *p (7.3)

where n is the particle number density equal to ϕ/Vp, where ϕ≪ 1 is the
particle volume fraction, Vp is the volume of a single particle, and S is
the particle stresslet [55,56] defined as

B
∫= +

∂
S n σr rn σ S1

2
[ · · ] d . (7.4)

In order to calculate the average stress in the suspension, we start by
evaluating the particle stresslet using the reciprocal theorem
[25,58,59]. Elfring [25] derives an expression for the stresslet in a
weakly non-Newtonian fluid which is (in dimensional form)

V
T E 

̂ ∫ ∫= − − ′∞
∂

∞S S u n τ
η
η

S V·( · ) d : d .E EB NN
(7.5)

Clearly, evaluation of the stresslet S up toO Cu( )2 using Eq. (7.4) would
require calculating the first correction to the flow field in the shear-
thinning fluid; however, Eq. (7.5), obtained using the reciprocal the-
orem, bypasses this calculation and the first correction to the stresslet is
obtained by using the Newtonian flow field.

We first evaluate the stresslet S∞ due to the stress σ∞ from the
background flow. In the absence of particles, the background stress σ∞
is simply

O= − − − +∞ ∞ ∞ ∞σ γ γCu n β γ Cu* * 1
2

(1 )(1 ) ˙ * ˙ * ( ),2 2 4
(7.6)

where = +∞ ∞ ∞ ⊤γ A A˙ * * * is the applied strain rate. Using the definition
of the stresslet (7.4), we therefore have, up to O Cu( ),2

= − − −∞ ∞ ∞ ∞S γ γπ Cu β n π γ* 4
3

˙ * 1
2

(1 )(1 ) 4
3

˙ * ˙ *.2 2
(7.7)

Evaluating the integral terms in (7.5), we obtain

− = − − −∞ ∞ ∞ ∞S S γ γπ Cu β n π γ* * 2 ˙ * 1
2

(1 )(1 ) 68469
17017

˙ * ˙ *,2 2
(7.8)

and therefore altogether have

= − − − ⎛
⎝

⎞
⎠

∞ ∞ ∞S γ γπ Cu β n π γ* 10
3

˙ * 1
2

(1 )(1 ) 273475
51051

˙ * ˙ *.2 2
(7.9)

The first term on the right hand side is the stresslet in a Newtonian
fluid. From the equation above, it can be seen that the total stresslet in a
shear-thinning fluid is less than that in Newtonian fluid.

We now proceed to calculate the average stress in Eq. (7.2). We note
that the mean Newtonian viscous stress, γ̇* , is equal to the bulk ap-
plied strain-rate ∞γ̇ * [27,56]. The second term on the right hand side in
Eq. (7.2) can be evaluated by first performing a formal ensemble
average based on the ergodic hypothesis [57] on γγ̇* ˙ *2 . Writing the
strain-rate in terms of the mean and fluctuating components we obtain

〈 = 〈 〉 = 〈 〉〈 〉 + 〈 〉′ ′γ γ γ γ γ γ γ˙ * ˙ * ˙ * ˙ * ˙ * ˙ * ˙ * ,ij ij ij ij ij ij
2

(7.10)

where dashed quantities are fluctuating values. Here, we have used the
fact 〈 〈 〉〉 =′γ γ˙ * ˙ * 0ij ij and as such, obtain = 〈 〉 + − 〈 〉′ ′ ′ ′ ′ ′* * * * *γ γ γ γ γ γ γ| ˙ *| 2 ˙ ˙ * ˙ ˙ ˙ ˙ij ij ij ij ij ij

2 .
Using these, the ensemble average:

〈 〉 = 〈 〉 〈 〉 + 〈 〉 = 〈 〉 〈 〉 + 〈 〉 〈 〉

+ 〈 〈 〉 〉 + 〈 〉

′ ′ ′ ′

′ ′ ′ ′ ′

( )γ γ γ γ γ γ γ

γ γ γ γ

γ γ γ γ

γ γ

˙ * ˙ * | ˙ | * ˙ * ˙ * ˙ * ˙ * ˙ * ˙ * ˙ * ˙ *

2 ˙ * ˙ * ˙ * ˙ * ˙ * ˙ * .

ij ij ij ij

ij ij ij ij

2 2 2

(7.11)

Performing this ensemble averaging step has been shown [57] to
remove terms that in a volume average give rise to divergent integrals
for dilute suspensions in second-order fluids [60,61]. We now replace
ensemble average by volume average in (7.11), and evaluate the
quantities both inside the solid spheres and in the fluid volume, noting
that inside the solid particles = −′ ∞γ γ˙ * ˙ *, since the total strain-rate
inside the particle is zero [56].

Following Koch and Subramanian [56], evaluation of (7.11) gives

〈 〉=⎛
⎝

+ ⎞
⎠

∞ ∞γ γγ
ϕ

γ˙ *| ˙ * 1
125

28
˙ * ˙ *.0

2
0

2

(7.12)

Summing all the contributions to the average stress in Eq. (7.2), we
have, finally,

〈 〉 = ⎡
⎣

+ − − − + ⎤
⎦

∞ ∞σ γϕ Cu β n bϕ γ* 1 2.5 1
2

(1 )(1 )(1 ) ˙ * ˙ *.2 2
(7.13)

where =b 288675/34034. The term inside the square bracket gives the
effective viscosity of the suspension. The presence of particles thickens
the fluid at the leading order (Einstein viscosity) where as at O Cu( )2 it
decreases the effective viscosity due to enhanced thinning of the fluid.
We also note that decreasing n linearly reduces the total correction to
fluid viscosity from the Einstein correction as discussed by Tanner et al.
[54] for dilute suspensions in power law fluids. The presence of parti-
cles in a shear-thinning fluid could lead to interesting rheological be-
haviour when the thickening and thinning effects of particles compete
at the same order. Also, the form of above expression suggests that a
dilute suspension of rigid spheres in a Carreau fluid will behave as a
Carreau fluid. In fact, our results agree with recent results by Domurath
et al. [62] who use a numerical homogenization technique to obtain the
effective viscosity of a dilute suspension in a Bird–Carreau model and
find that the effective viscosity too can be modelled using a Bird–-
Carreau model with modified values of the parameters.

8. Conclusion

In this work, we considered a few problems involving spheres in
shear-thinning fluids at zero Reynolds number. Using the reciprocal
theorem, we analytically demonstrated how shear-thinning rheology
may lead to qualitative changes in the particle dynamics compared to
Newtonian fluids. Specifically, we showed that the translational and
rotational dynamics of a sphere are coupled in shear-thinning fluids
which can lead to interesting dynamics in problems involving sedi-
mentation of rotating spheres (a setup which may be used as a rhe-
ometer) and sedimentation in a background flow field. We also showed
that for two equal spheres sedimenting along the line joining their
centres, the symmetry arguments used in Newtonian fluids will predict
the observed result in a generalised Newtonian fluid. Although these
two spheres will sediment maintaining their initial distance of separa-
tion, the variation of the shear-thinning effects with initial separation
distance is non-monotonic. Finally, we considered a dilute suspension
of spheres in a weakly shear-thinning fluid and showed that the re-
sulting suspension will also be a weakly shear-thinning fluid with a
viscosity that varies due to competing effects arising from the presence
of particles: the particles thicken the fluid (the Einstein viscosity
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correction) but also increase effective strain-rates thereby enhancing
shear-thinning. At higher strain-rates, outside the scope of our weakly
non-linear assumption, it would be interesting to investigate strain rates
at which the thinning effect supersedes the thickening one.
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Appendix

Here we present some expressions which were used to evaluate the integrals. Additional details on related expressions for both passive and active
particles can be found in the recent work of Nasouri and Elfring [63].

For a single sphere of radius a in a Newtonian fluid with viscosity ̂η

 ̂=R Iπη a6 ,FU (A.1)

 ̂=R Iπη a8 ,LΩ
3 (A.2)

 =R 0,LU (A.3)

 =R 0.FΩ (A.4)

Additionally,

TU
̂

= −n I Θ
η
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·
3
2

[ 2 ], (A.5)

where = xΘ ϵij ijk k and n is the unit normal to the surface.
The entities corresponding to E UU
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are detailed in [64]. Relevant to the stresslet calculation, we have
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which can be found in the supplementary information of [59].
For the problem involving two spheres sedimenting along their common axis, the stream functions for the two auxiliary cases in Newtonian

fluids, two spheres moving with the same velocity and two spheres approaching each other with equal speed, were reported by Stimson and Jeffery
[13] and Brenner [38], respectively. The stream functions are expressed in the form of infinite series solutions. To ensure convergence, we con-
sidered around the first 30 to 40 terms of the series. The stream functions are used to calculate the strain-rate tensors corresponding to EU

(Stimson–Jeffery) and E UΔ (Brenner–Maude). The stress tensor τNN for the case considered in the manuscript is evaluated using strain-rates from the
Stimson–Jeffery solution.

For the limiting case of two spheres touching each other and sedimenting, we use the solution of the problem in Newtonian fluids by Cooley and
O’Neill [30] to evaluate both τNN and EU . The stream function for this case is expressed in form of a definite integral from zero to infinity (equation
3.4 in the reference). A non-infinite value of the upper limit of the integral has to be chosen for evaluation; we find that convergence of the solution is
achieved at a value of around 15.
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