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a b s t r a c t

A wetting liquid is driven through a thin gap due to surface tension and when the gap
boundaries are elastic, the liquid deforms the gap as it rises. But when the fluid boundaries
are also permeable (or poroelastic), the liquid can permeate the boundaries and change
their properties, for example by swelling and softening, thereby altering the dynamics of
the rise. In this paper, we study the dynamics of capillary rise between two poroelastic
paper sheets to understand the effects of boundary permeability and softening. Using
theoretical and numerical approaches, we find that if the bending rigidity of sheets is
reduced, due to liquid permeation, the sheets coalesce faster compared to the case of
impermeable sheets. We show that as a direct consequence of this faster coalescence, the
volumeof fluid captured between the sheets can be significantly lower. Finally,we compare
our model predictions for the equilibrium states with some experimental observations.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Interactions of capillary forces and elasticmaterials are abundant in nature: bundle formations in bristles of awet painting
brush or in wet eyelashes (Bico et al., 2004; Duprat and Stone, 2015), strong hydrophobic interactions of the feathers of
aquatic birds (Rijke, 1970), or the fluid-mediated adhesion of a beetle to a substrate (Eisner and Aneshansley, 2000) are
just a few examples amongst the many. These interactions, referred to as elastocapillary effects, have shown to be a key
factor in collapsing (Maboudian, 1997; Cambau et al., 2011) or fabricating (Leong et al., 2010; Crane et al., 2012) engineered
microstructures, in the lubrication of soft materials (Hooke and O’Donoghue, 1972; Snoeijer, 2016) and can be exploited for
ultra-thin whitening (Chandra et al., 2009).

Our understanding of capillary rise dates back to experiments of Newton (1704), Jurin (1712), and the analysis of Laplace
(1805). When a small tube is in contact with a wetting fluid, capillary forces drive the liquid into the tube until they are
balanced by the gravitational forces. In a seminal work,Washburn (1921) showed that in capillary rise the balance of surface
tension forces and viscous dissipation governs the rate of fluid motion.

The coupling of surface tension forces and elastic forces can lead to surface deformations when liquid is in contact with
elastic media, for instance by forming wrinkles (Huang et al., 2007) or a ridge (Pericet-Camara et al., 2008). In particular,
capillary-induced self-assembly of thin flexible materials has attracted extensive attention, owing to recent developments
inmicro- andnano-engineering (see Bico et al., 2018 and the references therein). To shed some light on such interactions, Kim
and Mahadevan (2006) notably studied the capillary rise of a liquid between two flexible sheets, clamped at one end and
free at the other, and analytically characterized the equilibrium configurations. Duprat et al. (2011) then complemented this
analysis by looking into sheet deformation prior to equilibrium and developed a framework for capturing the dynamical
behavior of this elastocapillary rise (see also Aristoff et al., 2011). Subsequently, several studies have further extended this
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model by, for instance, investigating its multiple equilibria (Taroni and Vella, 2012), considering a series of sheets (Gat and
Gharib, 2013; Singh et al., 2014) or by employing the model to enhance the capillary flow in microchannels (Anoop and Sen,
2015).

In all of these studies, the sheets have been taken as impermeable entities whose properties remain constant upon wet-
ting. However, paper sheets are often permeable as liquidmay diffuse through and change their properties significantly (Lee
et al., 2016). For instance, water softens a paper napkin as it flows between the plies, which may affect its absorbency.
Given that such absorbency is important in paper products used in household and diagnostic applications (Martinez et al.,
2008), here we try to quantify the effect of sheet permeability on elastocapillary rise, as a simple model of, for instance, flow
between plies of a paper towel.

Paper consists of multiple layers of cellulose fibers. Each fiber has an internal cavity of half of its size, and the surrounding
wall is closely packedwith hydrophilicmicrofibrils (Topgaard and Söderman, 2001).When infiltrated bywater, before filling
the cavities, the liquid diffuses within the microfibrils and causes expansion and swelling (Enderby, 1955). Imbibition of
water into cellulose sponges (Kvick et al., 2017; Ha et al., 2018), swelling of two parallel sheets submerged into a liquid
bath (Holmes et al., 2016), and self-rolling of a piece of paper immersed into water (Reyssat and Mahadevan, 2011) are all
examples of this phenomenon. In a recent study, Lee et al. (2016) characterized deformation and stiffness of a strip of a paper
when it imbibes a stain of water due to surface tension forces. They showed that by absorbing water, the paper sheet swells,
increasing its thickness by ∼ 25%, while simultaneously decreasing its Young’s modulus from Ê = 828 MPa to Ê = 24 MPa.
This significant change of stiffness, which occurs due to imbibition of water by fiber-based materials, can alter the papers
absorptivity, and so is quite important in painting (Capodicasa et al., 2010) and diagnostic applications (Martinez et al., 2010).
Thus, to understand the effect of this permeability on capillary rise, in this paper, we consider the elastocapillary rise of a
liquid (e.g., water) between two paper sheets. The paper sheets are permeable and they become softer as the liquid rises
and permeates through. To study the system’s behavior, we closely follow the work of Duprat et al. (2011), but modify their
model to incorporate the permeability of the sheets by allowing the properties to change upon liquid imbibition. We discuss
the dynamics of sheet deformation and the equilibrium states, and compare them with those of impermeable sheets. We
show that due to the softening of the sheets, the absorbency of the system with permeable sheets is reduced compared to
the system with impermeable ones.

The outline of this paper is as follows. In Section 2, we present the details of the system and perform a scaling analysis. In
Section 3, we derive evolution equations for the sheet deformation and themeniscus position.We then solve these equations
using a finite difference scheme given in Section 4. Finally, in Section 5, we discuss the results, compare them with those of
impermeable sheets and our experimental observations.

2. Problem statement

We are interested in the capillary rise of a viscous fluid between two permeable elastic paper sheets. We consider sheets
of length l̂, thickness b̂, width ŵ and assume they are separated initially by distance 2ĥ0, as shown in Fig. 1(a). The sheets are
clamped at the upper end (i.e., ẑ = l̂) and immersed into the liquid bath from the lower free end (i.e., ẑ = 0). The liquid then
rises vertically (in ez) and we refer to the meniscus position as ẑm. The sheets are elastic and deform as the liquid rises and
we quantify the deflections by ĥ(ẑ, t̂) which varies from ĥ0 (no deflection) to zero (coalescence). The behavior of the system
is dominated by three forces: surface tension forces drive the flow, gravitational forces resist the rise of the liquid, and
finally the elastic forces account for the sheet deformations. We characterize these forces using two dimensionless groups,
namely the elastocapillary number E , which compares surface tension forces to elastic forces, and the Bond numberB, which
compares the effects of gravity and surface tension. We define

E =
γ̂ l̂4

B̂ĥ2
0

, (1)

B =
ρ̂ĝ l̂ĥ0

γ̂
, (2)

where γ̂ is the surface tension, ρ̂ is density, ĝ is the magnitude of gravitational acceleration, and B̂ = (1/12)Êb̂3 is the
bending stiffness per unit width with Ê being the Young’s modulus of the sheet. Duprat et al. (2011) showed that depending
on values of B and E , the system can exhibit three different configurations: the sheets bend but do not touch (ĥ(ẑ = 0) > 0,
regime I), they deflect such that they touch but do not coalesce (ĥ(ẑ = 0) = 0 and ∂ ĥ

∂ ẑ (ẑ = 0) ̸= 0, regime II), or they coalesce
over a finite length (regime III), as shown in Fig. 1(b).

Since the sheets are permeable, as liquid rises due to surface tension forces, it also permeates through the sheets and
changes their properties. Thus, to account for such changes, in our model we consider different properties for wet and dry
parts of the sheets and henceforth refer to them using subscripts ‘w’ and ‘d’ as

{
B̂w, Ew, b̂w, . . .

}
and

{
B̂d, Ed, b̂d, . . .

}
.
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Fig. 1. The schematic of the system: (a) Two poroelastic sheets clamped at the upper end are immersed into a liquid bath from the lower end. (b) Three
scenarios of the equilibrium. In regime I, sheets only slightly bend. In regime II, sheets lower end are in contact and in regime III, sheets coalesce over a
finite length.

Scaling analysis

This dynamical system involves several time scales and to simplify the problem it is important to compare them.
The classic time scale over which fluid rises (τ̂r ), is found by employing a steady unidirectional (Poiseuille) flow field
u = ∆p̂ĥ2

0/(3µ̂l̂). Noting that at equilibrium pressure must balance gravity ∆p̂ = ρ̂ĝ l̂ and that the pressure is set by surface
tension ∆p̂ = γ̂ /ĥ0 one finds the capillary rise time scale τ̂r = l̂/û = 3µ̂γ̂ /ĥ3

0(ρ̂ĝ)
2. When the elastic deformation of

the sheets is appreciable, Duprat et al. (2011) argued that the pressure scale is instead set by the deflection of the sheets
∆p̂ = B̂ĥ0/l̂4 so that in this case the ‘visco-elastic’ time scale τve = l̂/û = 3µ̂l̂6/B̂ĥ3

0 = B2E τ̂r . Duprat et al. (2011) found that
this occurs when B2E ≳ 10. Furthermore, at the moment when the sheets touch the liquid, inertia is clearly not negligible,
and in fact dominates the capillary rise (Quéré, 1997). Das et al. (2012) showed that this inertia-dominated regime prevails

at t̂ < τ̂c , where τ̂c =

√
ρ̂ĥ3

0/γ̂ (see also Das and Mitra, 2013). In our problem, fluid also permeates through the thickness
of the sheet as well as through the sheet vertically. Considering Washburn-like behavior for the fluid permeation in the
sheet (Washburn, 1921) the time scale for lateral fluid permeation τ̂D,x = b̂2/D̂w and vertical fluid permeation τ̂D,z = l̂2/D̂w ,
where D̂w is the diffusion coefficient of the paper.

To compare these time scales, we use properties of a filter paper sheet reported in Lee et al. (2016) and consider water as
the viscous fluid.We also take l̂ = 1 cm and ĥ0 = 0.5mmas typical values for the sheet length and gap size, respectively.We
find τ̂c/τ̂r ∼ 10−2, so we may neglect the effect of inertia since it vanishes very fast. We also find τ̂D,x/τ̂r ∼ 10−2 indicating
that fluid diffuses through the thickness of the sheet considerably faster than the capillary rise. Thus, we assume liquid
permeates the sheet (in its thickness), instantly. We also find τ̂r/τ̂D,z ∼ 10−3, implying that fluid diffusion along the length
of the sheet is very slow and so may be considered negligible at the time scale of the rise. Note that for this assumption to be
valid, τ̂D,z should always be larger than the time scale of elastocapillary rise, which may not be true for very flexible sheets.
However, for the cases considered in this study, one can assume that paper sheet is wet in the liquid-filled region and dry
in the liquid-free region. Thus, given a meniscus position ẑm, we consider properties of the wet paper sheet for 0 ≤ ẑ ≤ ẑm
and dry one for ẑm < ẑ ≤ l̂.

3. Governing equations

Here, we take l̂ as the characteristic vertical length scale, ĥ0 as the characteristic deflection of the sheet, and τ̂ve as the
characteristic time scale of the problem. We thereby non-dimensionalize all the quantities defining z = ẑ/l̂, zm = ẑm/l̂,
h = ĥ/ĥ0, t = t̂/τ̂ve and p = p̂/(B̂wĥ0/l̂4). Note that we have dropped the caret notation for the dimensionless parameters.
We assume that a reflection symmetry between the sheets is maintained and so we derive the governing equations for one
sheet (e.g., the one on the right in Fig. 1(a)) and the other side shall be identical. In modeling the system, we closely follow
the works of Stone et al. (Duprat et al., 2011; Aristoff et al., 2011), but incorporate the change of properties due to wetting.
Since the properties of the sheet have a discontinuity at the meniscus, we treat the wet and dry parts separately and enforce
boundary conditions at the interface.

Noting that ĥ0 ≪ l̂, we employ the lubrication approximation to express the fluid motion. The one-dimensional
momentum equation then dictates

u = −h2
w

(
∂p
∂z

+ BEw

)
, (3)

where u is the vertical component of the meniscus velocity and all variables are averaged across the gap. Although the
deflection of the sheet is a continuous function, we differentiate the deflection of the wet (hw , when z ≤ zm) and dry (hd,
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when z > zm) parts for clarity. As noted earlier, the time scale of the liquid permeation through the sheet thickness is
considerably smaller than the one of the rise. Thus, one can assume that the liquid saturates the sheets thickness instantly as
the meniscus rises. Furthermore, because the sheet is very thin (b̂w ≪ ĥ0), we neglect the mass of liquid permeated within
the sheet. One-dimensional mass conservation then yields

∂hw

∂t
+

∂

∂z
(hwu) = 0. (4)

Provided the sheet is sufficiently thin and long (i.e., b̂ ≪ ŵ ≪ l̂), and also stiff enough such that tension is negligible (Ralla-
bandi et al., 2018), we may use linear elasticity to approximate the quasi-static sheet deflection

p =
∂4hw

∂z4
. (5)

Substituting pressure (5) to (3), we find

u = −h2
w

(
∂5hw

∂z5
+ BEw

)
, (6)

which at z = zm gives the time evolution of the meniscus since u(z = zm) =
dzm
dt . Now by making use of Eq. (6), we can

rewrite the continuity Eq. (4) in terms of hw and its derivatives as

∂hw

∂t
= h2

w

(
3
∂hw

∂z
∂5hw

∂z5
+ 3BEw

∂hw

∂z
+ hw

∂6hw

∂z6

)
. (7)

For z > zm, there is no pressure gradient across the sheet and so we have

0 =
∂4hd

∂z4
. (8)

Boundary conditions

To account for the fixed end at z = 1, we set hd(z = 1) = 1 and ∂hd
∂z (z = 1) = 0. At the lower end (z = 0), we note that

there exists no net pressure or moment on the sheet so ∂4hw

∂z4
(z = 0) =

∂2hw

∂z2
(z = 0) = 0. Furthermore, in regime I, wherein

sheets cannot apply any force on each other ∂3hw

∂z3
(z = 0) = 0. In regime II, the sheets are no longer force free at z = 0 but

instead we have hw(z = 0) = 0. For regime III, this boundary condition changes to hw(z = zc) = 0, where zc is the length
of the coalescence which must also satisfy ∂hw

∂z (z = zc) = 0.
At the interface z = zm, continuity of sheet deflection and its slope are enforced by hw(z = zm) = hd(z = zm) and

∂hw

∂z (z = zm) =
∂hd
∂z (z = zm). Force and moment must also be continuous across the interface, thus Bw

∂3hw

∂z3
= Bd

∂3hd
∂z3

, and

Bw
∂2hw

∂z2
= Bd

∂2hd
∂z2

. Finally, due to surface tension forces, there exists a pressure jump at the meniscus, which can be found
using the Young–Laplace equation (de Gennes et al., 2004) and can be written in dimensionless form as

∂4hw

∂z4
−

∂4hd

∂z4
= −

Ew

hw

, (9)

where we assume the contact angle is zero and neglect the effects of a dynamic contact angle.
In summary, we have a coupled system of sixth-order non-linear Partial Differential Equations (PDEs) subjected to two

boundary conditions at the clamped end, three (or four including the extra condition for zc in regime III) conditions at the free
end and one condition accounting for the pressure jump at the meniscus. Additionally, we have four continuity conditions
that need to be satisfied at the interface.

To solve this problemnumerically, it is convenient to incorporate the dynamics of the liquid-free region into the boundary
conditions for the liquid-filled region, given the simplicity of the governing equations in the liquid-free region (Duprat et al.,
2011; Aristoff et al., 2011). To illustrate, from Eq. (8), one can find the deflection and the slope at the liquid-free region as

hd = A3z3 + A2z2 + A1z + A0, (10)
∂hd

∂z
= A6z2 + A5z + A4, (11)

where A0 to A6 are determined using the boundary conditions at the fixed end (z = 1) and the interface (z = zm). hd and
∂hd
∂z

are then found in terms of hw and its derivatives at z = zm as

hd(z) = 1 +
Br

6
(1 − z)2

[
3
∂2hw

∂z2
+

∂3hw

∂z3
(z − zm) + 2

∂3hw

∂z3
(1 − zm)

]
, (12)

∂hd

∂z
(z) = −

Br

2
(1 − z)

[
2
∂2hw

∂z2
+

∂3hw

∂z3
(z − zm) +

∂3hw

∂z3
(1 − zm)

]
, (13)
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where Br = Bw/Bd. Noting that hw = hd and ∂hw

∂z =
∂hd
∂z at the interface, we then find

hw(z = zm) = 1 +
Br

3
∂3hw

∂z3
(1 − zm)3 +

Br

2
∂2hw

∂z2
(1 − zm)2, (14)

∂hw

∂z
(z = zm) = −

Br

2
∂3hw

∂z3
(1 − zm)2 − Br

∂2hw

∂z2
(1 − zm), (15)

which provides two boundary conditions for hw at z = zm. Now, the governing equations in the liquid-filled region are
independent of hd, and so we can determine the behavior of the sheet by solely solving the system for z ≤ zm. Once hw is
found, we use Eq. (12) to find the deformation for the whole sheet.

4. Numerical approach

At early times t ≪ 1, neglecting inertia, one may consider a quasi-static deformation of the sheet ( ∂hw

∂t = 0) since sheet
deflections are very small and time enters the problem only through boundary conditions (Duprat et al., 2011). We expand
the deflection hw(z) =

∑n=5
n=0 Cnzn + O(z6m), where zm ≪ 1. From the pressure drop at the meniscus given in (9), we find

C5 = −Ew/(120zm). Boundary conditions at z = 0 dictate C4 = C2 = 0 and, recalling that in this limit sheets can only reach
regime I, we have C3 = 0. Finally, from the boundary conditions given in (14) and (15), we arrive at

hw = 1 −
Ew

120zm
z5 +

(
Ewz3m
24

+
Edz3m
12

−
Edz2m
3

+
Edzm
4

)
z

+

(
−

Ewz3m
30

+
Edzm
6

−
Ed
6

)
zm + O(z6m), (16)

which governs the sheet deflection in the liquid-filled region for t ≪ 1. Substituting hw from (16) in (6), we find the leading-
order evolution equation for the meniscus as

dzm
dt

=
Ew

zm
− BEw. (17)

To solve the dynamical system in full, we use Eqs. (16) and (17) for early times, and then to determine the behavior of
the system at later times, we follow the work of Aristoff et al. (2011) and implement an implicit finite-difference scheme
that is second-order accurate in space and first-order accurate in time. To resolve the nonlinear terms in Eqs. (6) and (7)
(e.g., h2

w
∂hw

∂z
∂5hw

∂z5
), we discretize the higher-order term ( ∂5hw

∂z5
) and then use the results of the previous time-step for the

lower-order terms (hw and ∂hw

∂z ). We repeat the procedure iteratively until the relative convergence error reaches below
10−5. We discretize the sheet length in the liquid-filled region using 30 points and take ∆t = 10−3 as the typical time step.
Recalling that in the scale of the considered problem we found τ̂c/τ̂r ∼ 10−2, we neglect inertia and take hw(t = 0) = 1
(zero deflection) and zm(t = 0) = 10−3 (negligible inertial meniscus rise) as initial conditions.

5. Results and discussion

In this sectionwe compare the dynamical and equilibriumbehavior of permeable paper sheetswith those of impermeable
ones, characterizing the effects of the elastocapillary number and Bond number on the dynamics of the system. Throughout
this section, we take Br = 0.1 for the permeable sheets which is the same for the paper sheets we used in our experiments.
Nonetheless, the theoretical framework presented in the previous section is valid for any given value of Br and can be simply
used for any poroelastic sheet, provided the assumptions made in our derivations remain valid.

At early times (t ≪ 1) when the sheet deflection is not yet significant, elasticity does not contribute to the dynamics
of the meniscus, nor does the permeability of sheet. Thus, regardless of the values of Ed and Br (= Bw/Bd = Ed/Ew), the
meniscus strictly follows the classical behavior of a simple capillary rise in a rigid channel given by zm =

√
2Ewt (note

that in the dimensional form Ew disappears). Defining a rescaled meniscus position as z∗
m =

√
1/(2Ew)zm (or equivalently

z∗
m =

√
Br/(2Ed)zm), one can see from Fig. 2(a) that z∗

m =
√
t predicts the initial behavior of z∗

m quite accurately. This behavior
can also be explained using the asymptotic expressions given in (16) and (17). At leading order, we find hw = 1 indicating
no deflection and so the problem is reduced to capillary rise between two rigid sheets. Furthermore, since at early times
zm ≪ 1,meniscus dynamics can be approximated to leading order as dzm/dt = Ew/zm (or dz∗

m/dt = 1/(2z∗
m)) confirming the

diffusive behavior. At later times, the sheet deformation becomes appreciable and the meniscus position no longer follows
the classical capillary-rise predictions. Once the lower ends of the sheets are in contact (denoted by a circle in Fig. 2(a)), after
a short period of almost stationary position, the meniscus rises with z∗

m ∼ t1/13, and then finally reaches the equilibrium.
We now compare the dynamics of the permeable sheets with impermeable cases. As noted earlier, for t ≪ 1, one can

neglect the effect of elasticity and permeability and so all the cases identically follow the classical behavior. For impermeable
sheets, as the elastocapillary number increases, the effect of bending becomes more dominant and the meniscus position
deviates from z∗

m =
√
t sooner. But in permeable sheets, the time evolution of meniscus is dictated by elastocapillary

numbers of both the dry region (e.g., Ed = 10) and the wet region (e.g., Ew = 100). Meniscus deviation from the classical
behavior thereby lies within two cases of impermeable sheets with bounding elastocapillary numbers (Ed = 10 and 100),
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Fig. 2. The time evolution of rescaled meniscus, z∗
m =

√
Br/(2Ed)zm: (a) Permeable sheets with B = 2, Ed = 10 and Br = 0.1. (b) Two impermeable sheets

with Ed = 10 and Ed = 100 and permeable sheets with Ed = 10 (or Ew = 100). In (b), for all cases B = 3 and solid black line refers to the classical capillary
rise (Washburn, 1921). Circles on each line indicate the time in which sheets reach regime II (h(t, z = 0) = 0).

Fig. 3. The area of the absorbed liquid A by (a) impermeable (Br = 1) and (b) permeable (Br = 0.1) sheets with B = 10 at equilibrium. Dashed lines
separate the regimes for each case. (c) The liquid absorption ratio, R, of permeable sheets compared to impermeable ones of the same Ed for B = 1 and
B = 10. Dashed lines here separate the different combinations of equilibrium regimes for permeable and impermeable cases and symbols denote the
regimes (e.g., II/I indicates that permeable sheets reach regime II while impermeable sheets are at regime I).

as can be seen in Fig. 2(b). However interestingly, the permeable sheets reach regime II (hw(z = 0) = 0) faster than both
bounding cases (denoted by circles in Fig. 2(b)).

Note that the system can only collect liquid while hw(z = 0) > 0; once the lower ends of sheets touch (hw(z = 0) = 0),
further rise of the liquid is purely due to sheet deflection as the liquid in the bath can no longer flow into the system. This
behavior may indicate that permeable sheets have less time to capture the liquid. To better highlight this point, in Fig. 3(a)
and (b), we have reported the area,A, of the risen liquid between the sheets at equilibrium, for impermeable and permeable
cases with B = 10. For small values of the elastocapillary number both permeable and impermeable sheets are in regime
I, the sheets only slightly bend, and the effect of permeability is not significant as both systems almost collect the same
amount of liquid.When the sheets reach regime II, the liquid uptake decreases substantially. Surprisingly, further increasing
the elastocapillary number to regime III does not significantly affect the liquid captured by impermeable sheets. However, for
permeable sheets, the softening of the sheets due to wetting leads to earlier coalescence compared to impermeable sheets
thereby less liquid is collected. One can further investigate this point by looking at the liquid absorption ratioR, of permeable
sheets to impermeable ones, as shown Fig. 3(c) for two cases of B = 1 and B = 10. Since permeable sheets reach regime II
at lower values of elastocapillary number compared to impermeable sheets, and also since small variation of elastocapillary
number in regime II can significantly affect the area of the liquid uptake, the absorption ratio drops substantially when both
permeable and impermeable sheets reach regime II.

Recall that Duprat et al. (2011) found that for impermeable sheets when B2Ed ≳ 10 the time scale for the capillary
rise is set by the deformation of the sheets, τ̂ve. We find here, surprisingly, that despite the discontinuity of E at the
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Fig. 4. Time to reach the 99% of the equilibriumheight versusB2Ew . Symbols represent the numerical results for the equilibrium time scale of impermeable
and permeable sheets. The dashed line indicates teq = 1.

meniscus, permeable sheets exhibit the same behavior for B2Ew ≳ 10, as shown in Fig. 4 (note that in our dimensionless
units t = 1 is t̂ = τ̂ve). This result indicates that when the sheets are sufficiently flexible, the equilibrium time scale for
permeable sheets is dominantly dictated by the properties of the liquid-filled region, and the dry region has no appreciable
contribution. We emphasize that this is the behavior of permeable sheets with B2Ew ≳ 10 and when the sheets are less
flexible (i.e., B2Ew < 10), the properties of the dry region may also affect the equilibrium time scale.

In Fig. 5(a), the regime map for permeable sheets with 1 < B < 10, 1 < Ed < 102 and Br = 0.1 is illustrated. Unlike
the case of impermeable sheets wherein for some values of elastocapillary number (i.e., 10 ≲ Ed ≲ 30) regimes I and II
coexist (Duprat et al., 2011), here the three regimes are distinct, which may caused by further softening of the sheets due to
wetting and their higher tendency to coalesce.

Recall that higher Bond numbers can indicate larger gaps, so one can argue that sheets need to bendmore to touch (regime
II) or coalesce (regime III). Thus, reaching regime II and III is more difficult when the Bond number (B) is large. Indeed, as
shown in Fig. 5(a), our numerical results show thatwhen the gap (or similarlyB) is large, reaching coalescence requires longer
sheets which indicates higher values of elastocapillary number. We note that this is in contrast to impermeable sheets with
B < 10 and 1 < Ed < 102, for which coalescence is more easily obtained for shorter sheets when the gap is large (Duprat
et al., 2011).

Finally, we note that in deriving the governing equations, we neglected the vertical liquid permeation within the sheet
as it occurs on a longer time scale than the capillary rise. But, once the system reaches the equilibrium, the contribution of
this upward permeation becomes significant, and the system then further evolves until the sheets are fully wet. Thus, to
study the dynamical behavior of the system at time scales longer than the elastocapillary rise, one should also account for
the vertical permeation within the sheets.

Experimental observations

We compare our numerically-obtained regime map with experimental observations. We use filter papers (Whatmann
grade 1), identical to ones used in Ref. Lee et al. (2016), with Êd = 828 MPa, Êw = 24 MPa and Br ≈ 0.1. We clamp the
paper sheets at the upper end using rare-earth magnets, and set the initial gap using steel shims of varying thicknesses, as
shown in Fig. 5(b). We slowly immerse the sheets into a water bath and capture the equilibrium state using a digital camera.
We report our observations for various combinations of Bond numbers and elastocapillary numbers in Fig. 5(a) (symbols in
the figure). We see that our numerical model is in good agreement with the experiments in predicting regime III. However,
the model predictions and the experimental results deviate from each other at lower values of elastocapillary number for
which the numerical model predicts regime I, while in the experiments, sheets surprisingly reach regime II. Although the
inhomogeneous swelling of the sheets (Holmes et al., 2016) and the attraction due to the presence of a curved menisci at
the interface (Vella and Mahadevan, 2005) may also contribute to this behavior, we believe that this discrepancy mainly
arises from the inertial effects which were neglected in our model. To examine regime I, the system should have a low
elastocapillary number. Noting that in our experiments we can only tune ĥ0 and l̂, we experimentally obtain low values for
the elastocapillary number by increasing the initial gap between the sheets (see Eq. (1)). But, the time scale of inertial effects
τ̂c scales as ∼ ĥ3/2

0 , and so it becomes more important when ĥ0 increases. Specifically, for gap values of order ∼ 2 mm, the
time scale of inertial effects is of the same order as that of the capillary rise. Therefore, for the cases with a large value of the
initial gap (which often are in regime I), the effects of inertia is no longer negligible and may contribute to the equilibrium
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Fig. 5. (a) Regimemap for the equilibrium state of permeable sheets in a logarithmic (B, Ed) space for Br = 0.1. Each shade refers to its specified regime and
is obtained using the numerical scheme discussed in Section 4. Symbols are the equilibrium states observed experimentally: Triangles (▲) denote regime
I, circles (•) indicate regime II and diamonds (♦) refer to regime III. (b) The experimental apparatus. Sheets here are in regime III.

state. In our experiments, we observe that in this regime sheets rapidly (and significantly) bend toward each other at the
very beginning and then exhibit the expected elastocapillary rise dynamics thereafter. Due to this initial effect, sheets’ lower
ends meet more readily and so the system proceeds to regime II.

6. Conclusion

In this paper, we studied the dynamics of capillary rise of a liquid between two flexible permeable paper sheets.
Accounting for the change of sheet stiffness due towetting, we discussed themotion of themeniscus and the sheet deflection
as the system reaches the equilibrium. As the liquid rises, it permeates within the sheets and softens them significantly.
Noting that the dynamics of the system is governed by both dry andwet regions of the sheets, as a direct consequence of this
further softening in the wet region, permeable sheets evolve toward coalescence more readily, compared to impermeable
ones.We also showed that the equilibrium time scale of the system is quite similar to those of impermeable sheets, however,
the volume of fluid captured between the permeable sheets can be notably lower. The lower ends of permeable sheets meet
soonerwhichmeans the systemhas less time to draw liquid in from thebath, and also the sheets are softer and so theydeform
significantly in response to the liquid rise. Recalling that, for instance, multi-ply paper towel is a collection of compressed
multi-layer permeable sheets, our results indicate that permeability of fibers should be accounted for in modeling capillary-
based systems, such as in sorption of oil spills (Nguyen et al., 2013; Gui et al., 2013) and in designing microfluidic paper-
based analytical devices (Martinez et al., 2008, 2010). Given the generality of the considered model, our results can be used
to examine the behavior of a series of permeable sheets (Gat and Gharib, 2013; Singh et al., 2014), be adapted to study the
buckling of sheets fixed at both ends, and be extended to also include the dynamics of the liquid permeation during the rise.
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