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a b s t r a c t 

Many microorganisms swim in fluids with complex rheological properties. Although much is now understood about motion of these swimmers in Newtonian fluids, 

the understanding is still developing in non-Newtonian fluids —this understanding is crucial for various biomimetic and biomedical applications. Here we study a 

common model for microswimmers, the squirmer model, in two common viscoelastic fluid models, the Giesekus fluid model and fluids of differential type (grade 

three), at zero Reynolds number. Through this article we address a recent commentary that discussed suitable values of parameters in these models and pointed at 

higher-order viscoelastic effects on squirming motion. 

1

 

o  

c  

m  

p  

n  

t

 

t  

b  

c  

fl  

c  

[  

t  

i  

B  

p  

u  

i  

t  

s  

i  

n  

[  

t  

n  

f  

a  

i  

fl

 

t  

s  

e  

t  

n  

e  

o  

G  

t  

T  

w  

i  

l  

v  

o  

T  

v

 

s  

o

2

2

 

a  

o  

h

R

A

0

. Introduction 

With ideas of minimally invasive surgery, targeted drug delivery, and

ther biomimetic applications [1–3] , an understanding of motion of mi-

roswimmers in complex fluids has become imperative. Subsequently,

any recent articles have focussed on motion of microswimmers in com-

lex fluids (see reviews [4,5] ). While biological fluids demonstrate many

on-Newtonian fluid properties [6] , one common property is viscoelas-

icity [7,8] . We consider this property in this article. 

Viscoelastic fluids show both viscous and elastic properties, and re-

ain memory of their flow history [9] . Recent experimental studies on

iological swimmers [10–12] have addressed how an organism may

hange its swimming stroke as it “senses ” the viscoelasticity of the

uid medium. Elastic stresses in the fluid can also directly contribute to

hanges in the swimming speed given a swimming stroke (see, for e.g.,

13] ). The present work is a theoretical study of swimmers in viscoelas-

ic fluids. A model of microswimmers conducive to theoretical treatment

s the squirmer model [14] . The model, developed by Lighthill [14] and

lake [15] , consists of a rigid body that generates thrust due to the

resence of (apparent) slip velocities on its surface. It has been used to

nderstand various single and collective behaviours of microswimmers

n Newtonian fluids [16] . In viscoelastic fluids, Zhu et al. [17] studied

he motion of squirmers using numerical simulations and found that all

quirmers —pushers, pullers and neutral swimmers —swim slower than

n a Newtonian fluid for a wide range of values of the Weissenberg

umber (measure of viscoelasticity in the fluid). Later, De Corato et al.

18] using a theoretical approach (and the squirmer model), showed

hat in fact for very small values of the Deborah (Weissenberg) number

ot considered in the work of Zhu et al. [17] pusher swimmers swim

aster, puller swimmers slower and neutral swimmers at the same speed

s in a Newtonian fluid. We note that in these studies, as will be the case
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n the present study, the swimming speeds in viscoelastic and Newtonian

uids are compared for the same swimming stroke. 

The work of De Corato et al. [18] used the second-order fluid model

o study weakly viscoelastic effects on squirming motion. The use of the

econd order fluid model with parametric values as chosen by De Corato

t al. [18] was critiqued by Christov and Jordan [19] who argued

hat the parametric values be chosen in accordance with thermody-

amic constraints and recommended the use of other viscoelastic mod-

ls which “better elucidate the transient effects of fluid viscoelasticity

n a squirmer ”. De Corato et al. [20] then showed that in fact using the

iesekus model to study weakly viscoelastic effects, to  ( 𝐷𝑒 ) , validates

heir results [18] that were obtained using the second-order fluid model.

he motivation for this work in large part is due to this discussion; here

e study the squirming motion to higher orders in Deborah number both

n the Giesekus fluid and in fluids of differential type. We find that un-

ike in a second-order fluid that obeys thermodynamic constraints, weak

iscoelastic contributions to the squirming speed are non-zero in a fluid

f grade three (third-order fluid) obeying thermodynamic constraints.

hese contributions are qualitatively different to those obtained due to

iscoelasticity as modelled by the Giesekus fluid. 

In the following, we briefly discuss the squirmer model and the

econd-order fluid model with the points of contention, and then present

ur results. 

. Theoretical framework 

.1. The squirmer model 

The spherical squirmer model consists of a sphere with prescribed

xisymmteric surface velocities (surface velocities may be thought of as

riginating from surface distortions in biological microswimmers like
2019 
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palina ) which generate thrust forces to propel the swimmer [14,15] .

e consider only tangential surface velocities on the swimmer (the

wimmer maintains its shape) so that the surface velocity 𝐮 𝑆 = 𝑢 𝑆 
𝜃
𝐞 𝜃 ,

here 𝑢 𝑆 
𝜃

can be expressed as 

 

𝑆 
𝜃
= Σ∞

𝑙=1 𝐵 𝑙 𝑉 𝑙 ( 𝜃) , (2.1)

sing 𝑉 𝑙 ( 𝜃) = − ( 2∕( 𝑙( 𝑙 + 1)) ) 𝑃 1 
𝑙 
( cos 𝜃) ; 𝑃 1 

𝑙 
( cos 𝜃) are associated Legendre

olynomials of the first kind, and 𝜃 is the polar angle measured from

he axis of symmetry [15] . The coefficients B l are generally referred

o as squirming modes. In Newtonian fluids, the swimming speed of

he squirmer is due to just the first mode, 𝑈 𝑁 

= 2∕3 𝐵 1 , and the second

ode B 2 gives the stresslet due to the squirmer [21] . As velocities due

o higher modes decay faster than due to the first two modes (in fact,

 2 gives the slowest decaying spatial contribution to the flow field), and

ince higher modes do not contribute to the swimming speed, in New-

onian fluids, often only the first two modes are considered, i.e., 𝐵 𝑛 = 0
or n > 3. For the purpose of this study, in accordance with the bulk of

iterature in the field [16] , we too consider only the first two modes. At

his point we feel it is important to note that in general considering only

he first two modes in complex fluids may be problematic as shown in

he recent works of Datt et al. [22,23] . The interested reader may refer

o the description of non-axisymmetric squirming modes in Newtonian

uids by Pak and Lauga [24] . 

When the ratio 𝛽 = 𝐵 2 ∕ 𝐵 1 is negative, the squirmer generates thrust

rom its rear end, like the bacterium E. coli. ; when 𝛽 > 0 the thrust is

enerated from the front end, as in the “breaststroking ” algae Chlamy-

omonas . When 𝛽 = 0 , the thrust and drag centres coincide, and flow

eld around the swimmer is due to a potential dipole. The three types

f squirmers are called pushers, pullers, and neutral swimmers, respec-

ively [16] . 

.2. The second-order fluid model 

The deviatoric stress in an incompressible second-order fluid is given

y 

= 𝜂𝗔 1 + 𝛼1 𝗔 2 + 𝛼2 𝗔 

2 
1 , (2.2)

here 

 1 ≡ 𝗟 + 𝗟 𝑇 , (2.3)

 𝑛 ≡ D 𝗔 𝑛 −1 
D 𝑡 

+ 𝗟 𝑇 𝗔 𝑛 −1 + 𝗔 𝑛 −1 𝗟 , (2.4)

ith 𝗟 𝑇 = 𝛁 𝐮 , and D/D t denoting the material derivative [25,26] . Here

is the shear viscosity and 𝛼1 and 𝛼2 are material moduli. The second-

rder fluid model may be obtained as a second-order approximation

o simple fluids with a particular kind of fading memory in slow flows

25,27,28] . The zeroth-order approximation gives the constitutive equa-

ion for the incompressible ideal fluid, whereas the first-order approxi-

ation results in the constitutive equation of the incompressible New-

onian fluid (the Navier–Stokes fluid) [25,27,28] . The third-order fluid

quation is discussed later in the article. The second-order model has

een used to study the first effects of viscoelasticity on the motion of

oth passive and active particles (see for e.g., [29–31] ). However, there

as been much discussion on the permissible values of 𝛼1 and 𝛼2 in the

odel. Dunn and Fosdick [32] have shown that considering (2.2) as

xact, the model is consistent with thermodynamics when 

≥ 0 , (2.5)

1 ≥ 0 , (2.6)

1 + 𝛼2 = 0 . (2.7)

However, often these constraints, citing experimental investigations

incorrectly, according to Dunn and Rajagopal [25] ), are not strictly

dhered to. In particular, 𝛼1 , which corresponds to the first normal stress

ifference coefficient, is generally taken to be negative [25] . 
52 
.3. The reciprocal theorem 

The reciprocal theorem of low Reynolds number hydrodynamics

33] can be used to calculate the first effects of the fluid rheology on

he swimming speed of microswimmers [34] . The details of the recipro-

al theorem for the specific case of squirmers in viscoelastic fluids may

e found, among others, in the works of Lauga [35] , De Corato et al.

18] and Datt et al. [23] . 

Consider a weakly non-linear fluid of the form [34] 

= 𝜂�̇� + 𝜀 𝚺[ 𝒖 ] , (2.8)

where 𝝉 is the deviatoric stress, 𝜂 is the shear viscosity, and �̇� is the strain

ate tensor so that the first term on the right hand side in (2.8) gives

he Newtonian contribution. Here 𝜀 is the small parameter that quanti-

es the deviation from the Newtonian behaviour and 𝚺 gives the non-

ewtonian contribution. The translational velocity of a squirmer of ra-

ius a in such a fluid is, obtained by using the reciprocal theorem, 

 = − 

1 
4 𝜋𝑎 2 ∫𝑆 𝐮 

𝑆 d 𝑆 − 𝜀 
1 

8 𝜋𝜂 ∫𝑉 𝚺 ∶ 
( 

1 + 

𝑎 2 

6 
∇ 

2 
) 

𝛁 𝗚 d 𝑉 , (2.9) 

here 𝗚 = ( 1∕ 𝑟 ) 
(
𝗜 + 𝐫 𝐫 ∕ 𝑟 2 

)
is the Oseen tensor, and S denotes the sur-

ace of the swimmer, and V , the fluid volume [23] . 

. Results and discussion 

De Corato et al. [18] studied the motion of a squirmer in a second-

rder fluid. Considering only small deviations from Newtonian be-

aviour, they expanded all flow quantities in the small parameter 𝜀 =
𝑒, where Deborah number 𝐷𝑒 = − 𝛼1 𝐵 1 ∕( 𝜂𝑎 ) is a measure of the relax-

tion time scale of the fluid to the characteristic time scale of the flow

note that for steady surface slip velocity squirmers, the Deborah and

eissenberg numbers are equivalent [36] ). De Corato et al. [18] as-

umed 𝛼1 < 0, in contradiction with the thermodynamic stability crite-

ion as pointed out by Christov and Jordan [19] . The thermodynamic

onstraint 𝛼1 + 𝛼2 = 0 was also relaxed. De Corato et al. [18] found

hat the perturbation calculations predicted that pushers swim faster,

ullers slower and neutral swimmers at the same speed as in Newtonian

uids, provided that the swimming gait remains unchanged between

he viscoelastic and Newtonian fluids. Their numerical simulations in a

iesekus fluid found the analytical results to hold up to De ≈0.02 [18] .

t was commented that the deviation of the results due to theoretical

alculations from those due to numerical simulations at larger De was

ecause of higher order viscoelastic effects that were neglected in the

nalytical results for which only  ( 𝐷𝑒 ) corrections were analysed [18] .

The critique of the work of De Corato et al. [18] by Christov and Jor-

an [19] was focussed on the former not respecting the thermodynamic

onstraints of the second-order fluid model. In particular, Christov and

ordan [19] remarked that since 𝛼1 + 𝛼2 should be equal to zero, most

orrections to flow quantities (but pressure) including the swimming

peed of the squirmer will be zero, since all these corrections are pro-

ortional to the sum 𝛼1 + 𝛼2 . Citing [32] , Christov and Jordan [19] also

ointed out that for 𝛼1 < 0 a steady solution to the problem should not be

xpected. Finally, Christov and Jordan [19] suggested calculating cor-

ections to the swimming motion with the thermodynamic constraints

meaning going to higher powers in De for any non-zero contributions)

r using a different viscoelastic model, such as the upper-convected

axwell model. 

De Corato et al. [20] then showed that even with using a more

nvolved model like the Giesekus fluid model (which reduces to the

pper-convected Maxwell model for a choice of a model parameter)

ne obtains equations identical to the second-order fluid in the limit of

mall De at  ( 𝐷𝑒 ) . Further, for its permissible values, the Giesekus fluid

ives identical results to those from the second-order fluid as used by

e Corato et al. [18] . In fact, they maintain that the second-order fluid

odel should be seen as an approximation to more complex viscoelastic

odels in slow and nearly steady flows (and therefore (2.2) not be seen
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Fig. 1. Swimming speeds in the Giesekus fluid as a function of De . The solid lines 

include corrections up to  

(
𝐷𝑒 3 

)
. The dashed lines are Padé approximations 

to the series for the speeds in the text. The dotted lines include only  ( 𝐷𝑒 ) 
corrections. The addition of the higher order modes decreases the speeds of the 

squirmers. As seen here (dashed lines), all squirmers at large values of De swim 

slower than in a Newtonian fluid, as found in the numerical work of Zhu et al. 

[17] . 
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s exact). Perhaps, in order to avoid any confusion, one may restrict the

se of the term “second-order fluid model ” only when it is treated as

n exact model obeying the thermodynamic constraints; where a slow

nd nearly steady flow approximation is used one can start with a more

nvolved model and reduce it to simpler constitutive equations at each

rder in the perturbation series in De . Below we use this terminology

nd study the squirmer in a Giesekus fluid and in fluids of grade n (the

econd-order fluid is a fluid of grade two) and calculate the corrections

o the swimming speed in these fluids to higher orders in De . 

.1. Giesekus fluid 

The polymeric stress in an incompressible Giesekus fluid is given as

37] 

𝑝 + 𝜆
∇ 
𝝉𝑝 + 𝛼𝑚 

𝜆

𝜂𝑝 
𝝉𝑝 ⋅ 𝝉𝑝 = 𝜂𝑝 ̇𝜸, (3.1)

where the mobility factor 𝛼m 

must take values between 0 and 1/2

17,37] . The total deviatoric stress in the fluid is 𝝉 = 𝝉𝑠 + 𝝉𝑝 where 𝝉𝑠 =
𝑠 ̇𝜸 is the contribution from the Newtonian solvent. The total viscos-

ty in the fluid 𝜂 = 𝜂𝑠 + 𝜂𝑝 . The Giesekus model, derived from molecular

deas [38,39] , has been successfully used to model experimental results,

ee, for example, [40–42] . Here we consider the case when 𝜁 = 𝜂𝑠 ∕ 𝜂 = 0 ;
hen 𝜁 = 0 and 𝛼𝑚 = 0 , (3.1) reduces to the upper-convected Maxwell

uid model [37] . 

We non-dimensionalise equations by scaling lengths by the squirmer

adius a , velocities with the first squirming mode B 1 , and stresses with

B 1 / a , and obtain the dimensionless constitutive equation 

∗ + 𝐷 𝑒 
∇ 
𝝉
∗ + 𝛼𝑚 𝐷 𝑒 𝝉∗ ⋅ 𝝉∗ = �̇�

∗ , (3.2)

where the Deborah number 𝐷𝑒 = 𝜆𝐵 1 ∕ 𝑎 . Henceforth, we drop the stars

or convenience. We expand all flow quantities in a regular perturbation

xpansion in De , and using standard methods to calculate the flow fields

n Stokes flow [33] obtain the swimming speed of the squirmer, up to

 

(
𝐷𝑒 3 

)
, 

 = 

2 
3 
+ 

2 
15 

𝛽
(
−1 + 𝛼𝑚 

)
𝐷𝑒 

+ 

𝛽2 
(
−20568 − 98136 𝛼𝑚 + 65266 𝛼2 

𝑚 

)
+ 84 

(
−193 + 176 𝛼𝑚 

(
−3 + 2 𝛼𝑚 

))
45045 

𝐷𝑒 2

+ 

𝛽

482431950 

( 

170 
(
3005646 + 𝛼𝑚 

(
6190100 + 3 𝛼𝑚 (

−10014053 + 4815243 𝛼𝑚 
)))

+ 𝛽2 
(
224764987 + 𝛼𝑚 

(
1298121442 + 3 𝛼𝑚 (

−1659132865 + 875113652 𝛼𝑚 
)))) 

𝐷𝑒 3 . (3.3) 

At this point, examining Eq. (3.3) for specific values of 𝛽 and 𝛼m 

be-

omes instructive; we choose 𝛽 = −1 for pushers, 0 for neutral squirmers,

nd 1 for puller type squirmers and 𝛼𝑚 = 0 . 2 . These values correspond

o the values used in the work of De Corato et al. [18] . From (3.3) we

nd, for pushers, 

𝑈 

𝑈 𝑁 

= 1 + 0 . 16 𝐷𝑒 − 2 . 05 𝐷𝑒 2 − 2 . 62 𝐷𝑒 3 , (3.4)

or pullers, 

𝑈 

𝑈 𝑁 

= 1 − 0 . 16 𝐷𝑒 − 2 . 05 𝐷𝑒 2 + 2 . 62 𝐷𝑒 3 , (3.5)

nd for neutral squirmers, 

𝑈 

𝑈 𝑁 

= 1 − 0 . 80 𝐷𝑒 2 . (3.6)
53 
he swimming speeds in (3.4), (3.5) , and (3.6) are plotted in Fig. 1

long with their respective Padé approximant 𝑃 1 2 ( 𝐷𝑒 ) [43] . When cor-

ections up to only  ( 𝐷𝑒 ) are considered, we note that pushers swim

aster, pullers slower and neutral swimmers at the same speed as in a

ewtonian fluid; this is shown in the work of De Corato et al. [18] . With

adé approximation of terms up to  

(
𝐷𝑒 3 

)
, we note that all the squirm-

rs swim slower than in a Newtonian fluid (except for very small values

f De ) as found in the numerical work of Zhu et al. [17] and De Corato

t al. [18] . Clearly, the inclusion of higher order terms changes the the-

retical predictions significantly. 

One may calculate terms to even higher-order in the expansion to

redict results for larger values of De . This is done by Housiadas and

anner [44] , up to  

(
𝐷𝑒 8 

)
, for steady sedimentation of a passive sphere

n a viscoelastic fluid. Housiadas and Tanner [44] also quantify when

he results from the series should not be considered (using positive def-

niteness of the conformation tensor). Sauzade et al. [45] and Elfring

nd Lauga [5] also performed a higher-order perturbation analysis, us-

ng techniques to improve the convergence properties of the series, for

he swimming speed of a two-dimensional swimming sheet where the

mall parameter was the amplitude of the waves on the sheet. We have

ot pursued these endeavours here, for the motivation for this study was

o see the differences between the different viscoelastic models consid-

ring only the first few terms. 

The results in the foregoing were obtained using the Giesekus model

or viscoelasticity. They would remain qualitatively the same if one

ere to use the upper-convected Maxwell model. But what happens to

 squirmer in a fluid of grade n , when the fluid is “regarded as a fluid in

ts own right, not necessarily an approximation to any other one ” [28] ?

.2. A fluid of grade three 

Consider an incompressible fluid of grade three [46] : 

= 𝜂𝗔 1 + 𝛼1 𝗔 2 + 𝛼2 𝗔 

2 
1 + 𝛽1 𝗔 3 + 𝛽2 

[
𝗔 1 𝗔 2 + 𝗔 2 𝗔 1 

]
+ 𝛽3 

(
tr 𝗔 

2 
1 
)
𝗔 1 , (3.7)

here 𝜂, 𝛼1 , 𝛼2 , 𝛽1 , 𝛽2 , and 𝛽3 are material moduli. The equation is

imensional. For a list of works using fluids of grade three, see [47] .

hermodynamics stipulates [46] that 

≥ 0 𝛼1 ≥ 0 , |𝛼1 + 𝛼2 | ≤ 

√
24 𝜂𝛽3 , 

= 0 𝛽 = 0 𝛽 ≥ 0 . (3.8) 
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Fig. 2. Squirming speeds in fluids of grade three. Solid lines:  = 3∕2 ,  = −7 . 
Dashed lines:  = 3∕2 ,  = 5 . Solid and dashed lines for 𝛽 = 0 overlap. Depend- 

ing on the values of  for a given  , either of the puller or pusher can swim 

faster or slower than in a Newtonian fluid at small De . 
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We scale flow quantities as before, and consequently, Eqs. (3.7) with

3.8) , in its dimensionless form, becomes 

= �̇� + 𝐷𝑒 

[ Δ
�̇� +  ̇𝜸 ⋅ �̇�

] 
+ 𝐷𝑒 2 [ tr ( ̇𝜸 ⋅ �̇�)  ̇𝜸] . (3.9)

Here 𝐷𝑒 = 𝛼1 𝐵 1 ∕( 𝜂𝑎 ) ,  = 𝛼2 ∕ 𝛼1 and  = 𝛽3 𝜂∕ 𝛼2 1 with  ≥ 0 and |1 +
 | ≤ 

√
24  . is the lower convected derivative of [37] , denoted by

 2 in Eq. (3.7) . We expand all flow quantities in a regular perturbation

xpansion of De and calculate the propulsion speed up to  

(
𝐷𝑒 2 

)
, which

n dimensionless form comes to be 

 = 

2 
3 
− 

2 
15 

𝛽( 1 +  ) 𝐷𝑒 

− 

2 𝛽2 ( 1 +  ) ( 161 + 559  ) − 48 
(
616 + 1383 𝛽2 

) 

45045 
𝐷𝑒 2 . (3.10)

Note that when  = 0 , we obtain a fluid of grade two, where 1 +  =
 (2.7) , and consequently, no contribution to the swimming speeds of the

quirmers we consider. This is in contradiction to the results obtained

hrough the weak De expansion in a Giesekus fluid to  ( 𝐷𝑒 ) where push-

rs and pullers swim faster and slower, respectively, than in a Newtonian

uid. This was discussed in the exchange between Christov and Jordan

19] and De Corato et al. [20] described previously. It should be noted

hat the form of expression (3.10) up to  ( 𝐷𝑒 ) is same as that of equa-

ion 31 in [18] . The difference in the coefficients is due to the different

cale of velocities employed by the authors; we scale velocities as B 1 ,

hereas De Corato et al. [18] use 2 B 1 /3. 

To observe the effects of a fluid of grade three, we choose  = 3∕2 (an

rbitrary choice in as much as the physics of the problem is concerned).

rom Eq. (3.8) and its dimensionless form above, we know that −7 ≤
 ≤ 5 . We plot the swimming speeds for two cases:  = 3∕2 ,  = −7
nd  = 3∕2 ,  = 5 in Fig. 2 . 

From Fig. 2 and Eq. (3.10) , we see that depending on the value of  ,

ither of the puller or the pusher can swim faster than in a Newtonian

uid at  ( 𝐷𝑒 ) . The higher order correction,  

(
𝐷𝑒 2 

)
, gives a positive

ontribution to the swimming speed. 

In contrast to the results from the Giesekus fluid, the parameters in

 fluid of grade three allow for a wider range of possibilities —either

f pullers or pushers can swim faster or slower at small values of the

eborah number. Here, we demonstrate this using the parameter  for

 given  . About this range of possibilities, perhaps it is useful to recall

he observation from Truesdell [28] that “it is possible that two fluids

f grade 3 could behave just alike in every viscometric test yet react
54 
ltogether differently to some test of a different kind ”. At higher De , all

quirmers swim faster in fluids of grade three than in a Newtonian fluid,

hen in Giesekus fluids they would swim slower. 

. Conclusion 

We calculated the higher order corrections to the swimming speeds

n two viscoelastic fluids —the Giesekus fluid and the fluid of grade

hree. The higher order corrections significantly add to the results at

 ( 𝐷𝑒 ) ; even at relatively small values of De , the corrections lead to qual-

tatively different speeds. This again raises the question about the range

f values of De at which the expansion can accurately predict results

also see [23] ). Importantly, we observe that the two fluids, the Giesekus

uid and the fluid of grade three, predict qualitatively different swim-

ing speeds for the squirmers. Clearly, the answer to what viscoelastic

odel to use depends on what all we wish to model —in this, we are

uided by experiments. 

cknowledgements 

The authors thank Professor G.M. Homsy for a remark on our pre-

ious work. The remark became one of the seeds for the present work.

he authors also thank I.C. Christov and P.M. Jordan for comments on

he manuscript. Funding from the Natural Sciences and Engineering Re-

earch Council of Canada (NSERC) grant (no. RGPIN-2014-06577 ) is

ratefully acknowledged. 

eferences 

[1] J. Wang, Can man-made nanomachines compete with nature biomotors? ACS Nano

3 (2009) 4–9, doi: 10.1021/nn800829k . 

[2] W. Gao , J. Wang , Synthetic micro/nanomotors in drug delivery, Nanoscale 6 (18)

(2014) 10486–10494 . 

[3] B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Microrobots for minimally invasive

medicine, Annu. Rev. Biomed. Eng. 12 (1) (2010) 55–85, doi: 10.1146/annurev-bio-

eng-010510-103409 . 

[4] J. Sznitman, P.E. Arratia, Locomotion Through Complex Fluids: An Experimental

View, Springer, pp. 245–281. doi: 10.1007/978-1-4939-2065-5_7 

[5] G.J. Elfring, E. Lauga, Theory of Locomotion Through Complex Fluids, Springer, pp.

283–317. doi: 10.1007/978-1-4939-2065-5_8 

[6] P.A. Vasquez, M.G. Forest, Complex Fluids and Soft Structures in the Human Body,

Springer, pp. 53–110. doi: 10.1007/978-1-4939-2065-5_2 

[7] G. Thurston, Viscoelasticity of human blood, Biophys. J. 12 (9) (1972) 1205–1217,

doi: 10.1016/S0006-3495(72)86156-3 . 

[8] S.K. Lai, Y.-Y. Wang, D. Wirtz, J. Hanes, Micro- and macrorheology of mucus, Adv.

Drug Deliv. Rev. 61 (2009) 86–100, doi: 10.1016/j.addr.2008.09.012 . 

[9] R.B. Bird , R.C. Armstrong , O. Hassager , Dynamics of Polymeric Liquids. Vol. 1: Fluid

Mechanics, John Wiley, 1987 . 

10] X.N. Shen, P.E. Arratia, Undulatory swimming in viscoelastic fluids, Phys. Rev. Lett.

106 (2011) 208101, doi: 10.1103/PhysRevLett.106.208101 . 

11] B. Qin , A. Gopinath , J. Yang , J.P. Gollub , P.E. Arratia , Flagellar kinematics and

swimming of algal cells in viscoelastic fluids, Sci. Rep. 5 (2015) . 

12] C. Li, B. Qin, A. Gopinath, P.E. Arratia, B. Thomases, R.D. Guy, Flagellar swim-

ming in viscoelastic fluids: role of fluid elastic stress revealed by simulations

based on experimental data, J. R. Soc. Interface 14 (135) (2017) 20170289,

doi: 10.1098/rsif.2017.0289 . 

13] E. Lauga, Propulsion in a viscoelastic fluid, Phys. Fluids 19 (2007) 083104,

doi: 10.1063/1.2751388 . 

14] M.J. Lighthill, On the squirming motion of nearly spherical deformable bodies

through liquids at very small Reynolds numbers, Commun. Pure Appl. Math. 5

(1952) 109–118, doi: 10.1002/cpa.3160050201 . 

15] J.R. Blake, A spherical envelope approach to ciliary propulsion, J. Fluid Mech. 46

(1971) 199–208, doi: 10.1017/S002211207100048X . 

16] T.J. Pedley, Spherical squirmers: models for swimming micro-organisms, IMA J.

Appl. Math. 81 (2016) 488–521, doi: 10.1093/imamat/hxw030 . 

17] L. Zhu, E. Lauga, L. Brandt, Self-propulsion in viscoelastic fluids: Pushers vs. pullers,

Phys. Fluids 24 (2012) 051902, doi: 10.1063/1.4718446 . 

18] M. De Corato, F. Greco, P.L. Maffettone, Locomotion of a microorganism in

weakly viscoelastic liquids, Phys. Rev. E 92 (2015) 053008, doi: 10.1103/Phys-

RevE.92.053008 . 

19] I.C. Christov, P.M. Jordan, Comment on “Locomotion of a microorganism in

weakly viscoelastic liquids ”, Phys. Rev. E 94 (2016) 057101, doi: 10.1103/Phys-

RevE.94.057101 . 

20] M. De Corato, F. Greco, P.L. Maffettone, Reply to “Comment on ‘Locomotion of a

microorganism in weakly viscoelastic liquids’ ”, Phys. Rev. E 94 (2016) 057102,

doi: 10.1103/PhysRevE.94.057102 . 

https://doi.org/10.13039/501100000038
https://doi.org/10.1021/nn800829k
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0002
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0002
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0002
https://doi.org/10.1146/annurev-bioeng-010510-103409
https://doi.org/10.1007/978-1-4939-2065-5_7
https://doi.org/10.1007/978-1-4939-2065-5_8
https://doi.org/10.1007/978-1-4939-2065-5_2
https://doi.org/10.1016/S0006-3495(72)86156-3
https://doi.org/10.1016/j.addr.2008.09.012
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0006
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0006
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0006
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0006
https://doi.org/10.1103/PhysRevLett.106.208101
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0008
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0008
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0008
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0008
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0008
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0008
https://doi.org/10.1098/rsif.2017.0289
https://doi.org/10.1063/1.2751388
https://doi.org/10.1002/cpa.3160050201
https://doi.org/10.1017/S002211207100048X
https://doi.org/10.1093/imamat/hxw030
https://doi.org/10.1063/1.4718446
https://doi.org/10.1103/PhysRevE.92.053008
https://doi.org/10.1103/PhysRevE.94.057101
https://doi.org/10.1103/PhysRevE.94.057102


C. Datt and G.J. Elfring Journal of Non-Newtonian Fluid Mechanics 270 (2019) 51–55 

[  

 

[  

[  

[  

[  

 

[

[  

 

[  

[  

 

[  

[  

[  

 

[  

[  

[  

[  

[

[  

 

[  

[  

 

[  

 

[  

 

[  

 

[  

 

 

 

[  

 

[  

 

[

21] T. Ishikawa, M.P. Simmonds, T.J. Pedley, Hydrodynamic interaction of two

swimming model micro-organisms, J. Fluid Mech. 568 (2006) 119–160,

doi: 10.1017/S0022112006002631 . 

22] C. Datt, L. Zhu, G.J. Elfring, O.S. Pak, Squirming through shear-thinning fluids, J.

Fluid Mech. 784 (2015) R1, doi: 10.1017/jfm.2015.600 . 

23] C. Datt, G. Natale, S.G. Hatzikiriakos, G.J. Elfring, An active particle in a complex

fluid, J. Fluid Mech. 823 (2017) 675–688, doi: 10.1017/jfm.2017.353 . 

24] O.S. Pak, E. Lauga, Generalized squirming motion of a sphere, J. Eng. Math. 88

(2014) 1–28, doi: 10.1007/s10665-014-9690-9 . 

25] J. Dunn, K. Rajagopal, Fluids of differential type: critical review and

thermodynamic analysis, Int. J. Eng. Sci. 33 (5) (1995) 689–729,

doi: 10.1016/0020-7225(94)00078-X . 

26] R.I. Tanner , Engineering Rheology, vol. 52, OUP Oxford, 2000 . 

27] B.D. Coleman, W. Noll, An approximation theorem for functionals, with applica-

tions in continuum mechanics, Arch. Ration. Mech. Anal. 6 (1) (1960) 355–370,

doi: 10.1007/bf00276168 . 

28] C. Truesdell, The meaning of viscometry in fluid dynamics, Annu. Rev. Fluid Mech.

6 (1) (1974) 111–146, doi: 10.1146/annurev.fl.06.010174.000551 . 

29] O.S. Pak, L. Zhu, L. Brandt, E. Lauga, Micropropulsion and microrheology

in complex fluids via symmetry breaking, Phys. Fluids 24 (2012) 103102,

doi: 10.1063/1.4758811 . 

30] A.M. Ardekani, R.H. Rangel, D.D. Joseph, Two spheres in a free stream of a second-

order fluid, Phys. Fluids 20 (6) (2008) 063101, doi: 10.1063/1.2917976 . 

31] P. Brunn, The motion of rigid particles in viscoelastic fluids, J. Non-Newton. Fluid

Mech. 7 (1980) 271–288, doi: 10.1016/0377-0257(82)80019-0 . 

32] J.E. Dunn, R.L. Fosdick, Thermodynamics, stability, and boundedness of fluids of

complexity 2 and fluids of second grade, Arch. Ration. Mech. Anal. 56 (3) (1974)

191–252, doi: 10.1007/BF00280970 . 

33] J. Happel , H. Brenner , Low Reynolds Number Hydrodynamics, Martinus Nijhoff,

1983 . 

34] E. Lauga, Locomotion in complex fluids: Integral theorems, Phys. Fluids 26 (2014)

081902, doi: 10.1063/1.4891969 . 

35] E. Lauga, Life at high Deborah number, Europhys. Lett. 86 (2009) 64001,

doi: 10.1209/0295-5075/86/64001 . 
55 
36] R. Poole , The Deborah and Weissenberg numbers, Rheol. Bull. The British Society

of Rheology 53 (2012) 32–39 . 

37] A. Morozov, S.E. Spagnolie, Introduction to Complex Fluids, Springer, pp. 3–52. 

38] H. Giesekus, A simple constitutive equation for polymer fluids based on the concept

of deformation-dependent tensorial mobility, J. Non-Newton. Fluid Mech. 11 (1)

(1982) 69–109, doi: 10.1016/0377-0257(82)85016-7 . 

39] R.B. Bird, J.M. Wiest, Constitutive equations for polymeric liquids, Annu. Rev. Fluid

Mech. 27 (1) (1995) 169–193, doi: 10.1146/annurev.fl.27.010195.001125 . 

40] G. D’Avino, M.A. Hulsen, F. Snijkers, J. Vermant, F. Greco, P.L. Maffettone, Rotation

of a sphere in a viscoelastic liquid subjected to shear flow. Part i: simulation results,

J. Rheol. 52 (6) (2008) 1331–1346, doi: 10.1122/1.2998219 . 

41] F. Snijkers, G. DAvino, P.L. Maffettone, F. Greco, M. Hulsen, J. Vermant, Rotation of

a sphere in a viscoelastic liquid subjected to shear flow. Part ii. Experimental results,

J. Rheol. 53 (2) (2009) 459–480, doi: 10.1122/1.3073052 . 

42] F. Snijkers, G. DAvino, P. Maffettone, F. Greco, M. Hulsen, J. Vermant, Effect of

viscoelasticity on the rotation of a sphere in shear flow, J. Non Newton. Fluid Mech.

166 (7) (2011) 363–372, doi: 10.1016/j.jnnfm.2011.01.004 . 

43] C.M. Bender , S.A. Orszag , Advanced Mathematical Methods for Scientists and Engi-

neers I: Asymptotic Methods and Perturbation Theory, Springer Science & Business

Media, 2013 . 

44] K.D. Housiadas, R.I. Tanner, A high-order perturbation solution for the steady sedi-

mentation of a sphere in a viscoelastic fluid, J. Non-Newton. Fluid Mech. 233 (2016)

166–180, doi: 10.1016/j.jnnfm.2016.03.014 . Papers presented at the Rheology Sym-

posium in honor of Prof. R. I. Tanner on the occasion of his 82nd birthday, in Vathi,

Samos, Greece 

45] M. Sauzade, G.J. Elfring, E. Lauga, Taylor’s swimming sheet: analysis and im-

provement of the perturbation series, Phys. D 240 (20) (2011) 1567–1573,

doi: 10.1016/j.physd.2011.06.023 . 

46] R.L. Fosdick, K.R. Rajagopal, P. Chadwick, Thermodynamics and stability of

fluids of third grade, Proc. R. Soc. Lond. A. 369 (1738) (1980) 351–377,

doi: 10.1098/rspa.1980.0005 . 

47] R.B. Bird, Useful non-Newtonian models, Annu. Rev. Fluid Mech. 8 (1) (1976) 13–

34, doi: 10.1146/annurev.fl.08.010176.000305 . 

https://doi.org/10.1017/S0022112006002631
https://doi.org/10.1017/jfm.2015.600
https://doi.org/10.1017/jfm.2017.353
https://doi.org/10.1007/s10665-014-9690-9
https://doi.org/10.1016/0020-7225(94)00078-X
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0023
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0023
https://doi.org/10.1007/bf00276168
https://doi.org/10.1146/annurev.fl.06.010174.000551
https://doi.org/10.1063/1.4758811
https://doi.org/10.1063/1.2917976
https://doi.org/10.1016/0377-0257(82)80019-0
https://doi.org/10.1007/BF00280970
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0030
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0030
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0030
https://doi.org/10.1063/1.4891969
https://doi.org/10.1209/0295-5075/86/64001
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0033
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0033
https://doi.org/10.1016/0377-0257(82)85016-7
https://doi.org/10.1146/annurev.fl.27.010195.001125
https://doi.org/10.1122/1.2998219
https://doi.org/10.1122/1.3073052
https://doi.org/10.1016/j.jnnfm.2011.01.004
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0039
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0039
http://refhub.elsevier.com/S0377-0257(19)30100-4/sbref0039
https://doi.org/10.1016/j.jnnfm.2016.03.014
https://doi.org/10.1016/j.physd.2011.06.023
https://doi.org/10.1098/rspa.1980.0005
https://doi.org/10.1146/annurev.fl.08.010176.000305

	A note on higher-order perturbative corrections to squirming speed in weakly viscoelastic fluids
	1 Introduction
	2 Theoretical framework
	2.1 The squirmer model
	2.2 The second-order fluid model
	2.3 The reciprocal theorem

	3 Results and discussion
	3.1 Giesekus fluid
	3.2 A fluid of grade three

	4 Conclusion
	Acknowledgements
	References


