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ABSTRACT
We investigate the dynamics of a prolate spheroid in a shear flow of a shear-thinning Carreau fluid. The motion of a prolate particle is
developed analytically for asymptotically weak shear thinning and then integrated numerically. We find that shear-thinning rheology does
not lift the degeneracy of Jeffery orbits observed in Newtonian fluids, but the instantaneous rate of rotation and trajectories of the orbits are
modified. Qualitatively, shear thinning has a similar effect to elongating the particle in a Newtonian fluid. The period of rotation increases as
the particle slows down more when aligned with the flow due to a reduction in shear stresses. Unlike Jeffery orbits in Newtonian fluids, in
shear-thinning fluids, the period of orbits depends on the specific trajectory (or initial orientation of the particle).
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I. INTRODUCTION

Pastes,1 paints,2 pulps,3 and ceramics,4 among many other
chemical substances,5 contain suspensions of (anisotropic) parti-
cles. Suspensions of particles in complex fluids are widely used
in the petroleum industry, from drilling muds used to drill wells6
to viscoelastic carrier fluids that carry proppant particles used in
hydraulic fracturing.7 Biological fluids also carry nutrition,8 Bacillus
species,9 and othermobilemicro-organisms ofmostly rod shape.10,11
These are but a few examples that demonstrate the importance
of understanding the underlying dynamics and rheology of par-
ticles suspended in fluid flows. As we will highlight below, this
area has a long literature when the suspending fluid is Newto-
nian, but our understanding is much more basic when the fluid is
non-Newtonian.

The presence of particles in a fluid can dramatically change its
rheology. Einstein12,13 calculated an effective viscosity for a dilute
suspension of noncolloidal hard spheres and showed that the effec-
tive viscosity of the suspension increases linearly with the volume
fraction of spheres. For higher volume fractions, hydrodynamic (and
contact) interactions become more significant. Suspensions gener-
ally shear thin with increasing the shear14 while beyond a threshold
exhibiting shear thickening or even jamming.15 If the particles are
anisotropic, then even small deviations from spherical geometry can
significantly impact the rheology even for dilute suspensions.16 One
reason for this is because elongated or rod-like particles tend to align

with the flow, thus changing the properties of the fluid under shear.
Therefore, understanding the dynamics of even a single particle in
shear is important to determine the rheology of a suspension of
anisotropic particles.

The dynamics of elongated particles, for example, axisymmet-
ric ellipsoids and spheroids, display significantly more complicated
behavior than spherical particles under shear.17–20 At zero Reynolds
number, spheroids and long slender bodies in shear flow undergo
a periodic motion. A century ago, Jeffery19 solved the motion of a
neutrally buoyant ellipsoid of revolution in a simple uniform shear
flow in the absence of inertial and Brownian forces. He found that
the particle’s axis of revolution rotates on infinitely many degenerate
periodic orbits called “Jeffery orbits.” Jeffery’s solution is degenerate
in the sense that the orientation of the body at long times depends on
its initial orientation. Jeffery suggested that this degeneracy would
be lifted by inertia and speculated that the particle would evolve to
an orbit corresponding to the minimum mean energy dissipation.
A year after Jeffery’s calculations, Taylor21 experimentally showed
that an ellipsoid of revolution in a simple shear flow drifts through
the continuous family of Jeffery orbits until the ellipsoid is rotat-
ing in a final preferred orbit. A prolate spheroid, after approximately
180 complete revolutions, would settle into a log-rolling final orbit,
rotating perpendicular to the shear plane so that its long axis is par-
allel to the vortex direction. In contrast, an oblate spheroid, after
approximately 40 revolutions, would assume a tumbling orbit in
which its axis of revolution is in the shear plane and rotates with
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variable angular velocity. In other words, Taylor confirmed Jeffery’s
minimum energy hypothesis for spheroidal particles within the
range of his experiments. Harper and Chang22 later showed the-
oretically and experimentally that the preferred constant orbit for
a dumb-bell shaped body corresponds to maximum dissipation
(tumbling in the flow-shear plane). Ding and Aidun23 showed
through direct numerical simulations that the period of a pro-
late spheroid diverges for higher Reynolds numbers as the particle
remains motionless when it is nearly aligned with the flow direc-
tion. Recently, Einarsson et al.24–29 have shown theoretically that in
the limit of weak flow and particle inertia, the degeneracy of Jeffery
orbits is indeed lifted. The first effects due to weak inertia cause a
prolate spheroid in simple shear to drift to a stable tumbling limit
cycle, whatever the initial condition.24

Bretherton30 investigated the motion of a particle of more gen-
eral shape in shear flow and in the presence of rigid boundaries.
He showed that axisymmetric particles follow Jeffery’s equation of
motion if the aspect ratio is replaced with an approximate effective
aspect ratio. The theoretical work of Hinch and Leal31 on nonax-
isymmetric ellipsoids in shear flow showed that even a small devi-
ation from axisymmetric geometry results in profound changes in
the nature of the orbit. Consequently, theoretical models quanti-
fying real solutions of particles, on the assumption of axisymmet-
ric particles, can be inaccurate. The motion of a nonaxisymmetric
ellipsoid has two periodic parts called “doubly periodic” tumbling:
a rapid rotation similar to Jeffery orbits and a slower drift in the
orbits. Recently, Masoud et al.32 numerically showed that porous
ellipsoids follow Jeffery orbits (of impermeable ellipsoids) to a very
good approximation.

As noted above, most prior studies have focused on Newto-
nian fluids, but for suspensions in non-Newtonian fluids, the fun-
damental building blocks governing the rheology are still being
developed. Non-Newtonian carrier fluids can produce qualitative
changes in the rheological behavior of suspensions in comparison
with Newtonian fluids; as an example, recent studies have calcu-
lated modifications of the Einstein viscosity for dilute suspensions of
spheres in weakly nonlinear viscoelastic fluids33 and shear-thinning
fluids.34

The dynamics of individual particles in flows can also be sub-
stantially modified by complex fluid rheology. Early work focused
on the dynamics of spherical particles in weakly nonlinear viscoelas-
tic fluids, and much of that work is summarized in a wonderful
review by Leal.35 The dynamics of anisotropic particles in shear
flows of viscoelastic fluids has also received attention. In experimen-
tal work, Saffman36 reported that spheroidal particles deviate from
Jeffery orbits in viscoelastic fluids. Experiments conducted by Bar-
tram et al.37 in viscoelastic fluids showed that at low shear rates
(in comparison to the relaxation time of the fluid), slender bodies
tend to see an increase in the period of rotation and a drift toward
the log-rolling position; however, at higher shear rates, they tend
to face the flow direction and stop rotating. Leal38 found similar
results, calculated theoretically, for the motion of rod-like particles
in second-order fluids. Brunn39 found theoretically that the effect of
a second-order fluid on ellipsoidal particles in shear flow is as fol-
lows: a prolate spheroid drifts to log-rolling, whereas an oblate tum-
bles around the vorticity axis in direct contradistinction to the effects
of weak inertia.24 Gunes et al.40 carried out experiments for prolate
spheroids of a moderate aspect ratio in several suspending fluids.

They found that elastic effects tend to increase the period of rotation
and that the orbits start to drift toward log-rolling. In recent numer-
ical simulations, D’Avino et al.41 have shown that a prolate particle
in a viscoelastic fluid achieves a log rolling orbit at low shear rates
while the particle tends to align in the flow direction at high shear
rates.

Much of the work on the dynamics of particles in complex flu-
ids has focused on the effects of viscoelasticity; see, for example,
the recent review by Shaqfeh42 that summarizes prior research and
recent advances on the rheology of particle suspensions in viscoelas-
tic fluids. However, many realistic complex fluids tend to exhibit
both viscoelasticity and shear-dependent rheology.43,44 Recently,
Datt and Elfring34 explored different dynamics of spherical particles
in shear-thinning fluids and observed, for example, that the rotation
rate of a sphere in shear flow is unaffected by shear-thinning rhe-
ology, but the impacts of shear rheology on the dynamics of other
(anisotropic) particles have received almost no attention. Recently,
Férec et al.45 investigated the dynamics of a two-dimensional ellip-
soidal particle in shear flow of a power-law fluid using a finite ele-
ment simulation. In this proceeding, the authors showed a slight
reduction in angular velocity that diminishes with a particle aspect
ratio. Sobhani et al.46 also studied the dynamics of an elliptic par-
ticle in a yield-stress fluid using the lattice-Boltzmann method. In
this paper, we consider the dynamics of a neutrally buoyant three-
dimensional prolate spheroid in a shear flow of a weakly shear-
thinning fluid. The particle is small enough that inertial forces are
negligible but big enough that Brownian forces do not play a role.
To capture the leading-order effects of shear-thinning rheology on
the dynamics, we solve for the motion of the particle for asymptot-
ically weak shear thinning using the Carreau model. The question
we ask is whether shear-thinning rheology affects the orientational
dynamics and to what extent, and in particular, is shear-thinning
rheology sufficient to lift the degeneracy of Jeffery orbits in Newto-
nian fluids. We will show that the orbits are indeed modified, but
the degeneracy must remain due to the symmetry of the constitu-
tive equations. This paper is organized as follows: we start with the
rheology of shear-thinning fluids and then move to the problem
of a single prolate spheroid in the linear flow of Newtonian fluid.
Finally, we study the deviation of the dynamics due to weak shear
thinning.

II. MATHEMATICAL MODEL

A. A spheroid in shear
We consider here a prolate spheroid B with surface @B, whose

axis of symmetry is defined by the unit vector p, as shown in Fig. 1.
The polar angle of the particle, with respect to a fixed lab frame
whose origin is at the particle center, is θ while ϕ is the azimuthal
angle. The major (minor) axis length is denoted by a (b), and the
aspect ratio is λ = a�b = 1�√1 − e2 > 1. The spheroid is immersed
in an otherwise linear velocity field defined by u∞ = A∞ ⋅ x, whose
origin is at the center of the particle to eliminate any constant trans-
lation. The velocity gradient tensor∇u∞ = A∞ is constant and may
be decomposed in the usual way into symmetric and antisymmetric
parts A∞ = E∞ + Ω∞ × I, where Ω∞ is the angular velocity of the
background flow (I is the identity). The flow-shear plane is defined
by the basis ex and ey.
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FIG. 1. A prolate spheroid in simple shear flow.

Given a fluid velocity field u, we define a disturbance velocity
field relative to the background as

u′ = u − u∞. (1)

We assume no slip on the surface of the spheroid and that the dis-
turbance flow is zero far from the spheroid, written in terms of the
disturbance quantities that the boundary conditions are

u′ = (Ω −Ω∞) × x − E∞ ⋅ x x ∈ @B, (2)

u′ = 0 �x�→∞, (3)

whereΩ is the angular velocity of the spheroid (the translation veloc-
ity U = 0 by construction). The difference in the angular velocity of
the spheroid and the undisturbed background flow Ω′ = Ω − Ω∞
is sometimes referred to as the slip angular velocity26 (although the
no-slip condition is indeed satisfied). The evolution of the particle
director is

ṗ = Ω × p. (4)

B. Shear-thinning fluids
We consider here fluids that shear thin, meaning the viscosity

of the fluids, η, decreases with increasing strain rates, γ̇. To capture
this behavior and its effect on the dynamics of a prolate ellipsoid in
shear, we use the Carreau model44 for a generalized Newtonian fluid
with deviatoric stress

τ = η(γ̇)γ̇, (5)

where the functional dependence of the viscosity on the strain-rate,

η(γ̇) = η∞ + (η0 − η∞)�1 + λ2t �γ̇�2� (n−1)2 , (6)

is characterized by a zero-shear viscosity η0, an infinite-shear vis-
cosity η∞, a time constant λt , and a power-law index n < 1. The
magnitude of strain-rate is defined �γ̇� = �γ̇ : γ̇. In this study, we
explore only the weakly shear-thinning effects on the dynamics of
the particle. In this regard, we always assume that λt � 1�γ̇c, where
we define γ̇c ≡ √2E∞ : E∞ as the characteristic strain rate of the
flow defined by the external imposed flow. The deviatoric stress may
be conveniently decomposed into Newtonian and non-Newtonian
parts, τ = η0γ̇ + τNN , where the non-Newtonian part,

τNN = (η(γ̇) − η0)γ̇, (7)

is defined as the amount of shear thinning relative to the zero-shear
viscosity η0.

C. Motion of a particle in a complex fluid
In the absence of inertia, the velocity of a particle in a back-

ground flow of a fluid of arbitrary rheology may be written as

U = R̂−1FU ⋅ [Fext + FT + FNN], (8)

where U = [UΩ]� is a 6-dimensional vectors containing trans-
lational and rotational velocities; similarly, F = [F L]� represents
both force and torque.47 We consider here a particle that is neutrally
buoyant and that no other external force acts on the particle and thus
Fext = 0.

The term
FT = −�

@B
u∞ ⋅ (n ⋅ T̂U)dS (9)

is the drag force and torque on a particle held fixed in a back-
ground flow u∞ of a Newtonian fluid of constant viscosity η0. In
a Newtonian fluid, this force, along with the rigid-body resistance
tensor,

R̂FU = �����
R̂FU R̂FΩ

R̂LU R̂LΩ

�����, (10)

for the particle in the same Newtonian fluid, would entirely deter-
mine the dynamics of a freely moving particleU0 = R̂−1FU ⋅ FT .

In a non-Newtonian fluid, there is an extra force/torque on the
particle due to the extra deviatoric stress τNN in the fluid volume V
in which the particle is immersed.35 This force is given by

FNN = −�
V

τNN : ÊU dV . (11)

We may write for simplicity that velocity is composed of a Newto-
nian part and a non-Newtonian correction U = U0 + R̂−1FU ⋅ FNN .
A similar approach has also been used for studying the dynamics of
active particles in complex fluids.47–49

The tensors ÊU and T̂U, in addition to R̂FU, are linear opera-
tors that are calculated from the resistance problem for the same par-
ticle in a Newtonian fluid with viscosity η0. The tensors ÊU and T̂U
are functions of position in space that map the rigid-body motion
Û of a particle to the fluid strain-rate ˆ̇γ = 2ÊU ⋅ Û and stress fields
σ̂ = T̂U ⋅ Û, respectively.

In our study, the translational velocity of the particle is zero,
U = 0, and by symmetry, the only relevant component of the hydro-
dynamic resistance is R̂LΩ. Because of this, the above general expres-
sions simplify considerably so that the angular velocity of the particle
in a non-Newtonian fluid is

Ω = Ω0 − R̂−1LΩ ⋅�
V

τNN : ÊΩ dV , (12)

where the angular velocity in a Newtonian fluid is

Ω0 = −R̂−1LΩ ⋅�
@B

u∞ ⋅ (n ⋅ T̂Ω)dS. (13)

Clearly, the Newtonian dynamics are well known, and to determine
the correction, we must (only) resolve the integral on the right-hand
side of (12). The tensors R̂LΩ, ÊΩ, and T̂Ω for prolate spheroids
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are also well known (see details in Appendix C), but to calculate
the integral, one must also know the non-Newtonian stress τNN in
the entire fluid domain and thus requires resolution of the non-
Newtonian flow field. To bypass this difficulty, we employ a pertur-
bative approach wherein the leading-order contributions to the non-
Newtonian stress are determined by the flow-field of the Newtonian
solution τNN ∼ τNN(u0).
D. Asymptotic solution

First, we nondimensionalize our equations (denoted by ∗) and
lengths are scaled by themajor axis length a and stresses by η0γ̇c. The
dimensionless non-Newtonian stress is thus

τ∗NN = −(1 − β)�1 − [1 + Cu2�γ̇∗�2](n−1)�2�γ̇∗. (14)

The Carreau numberCu = γ̇cλt is the ratio of the characteristic strain
rate γ̇c to the crossover strain-rate 1/λt , while the viscosity ratio is
β = η∞/η0. We note that when Cu = 0 or β = 1 the fluid is New-
tonian. For weak deviations from Newtonian behavior, one may
take as a small parameter Cu2 or 1 − β;50 here, we choose Cu2 to
explore the first effects of shear-thinning as this leads to a much
more analytically tractable expression. Thus, flow quantities are
expanded in regular perturbation series in powers of Cu2, u∗ = u∗0
+ Cu2u∗1 + O(Cu4), and τ∗ = τ∗0 + Cu2τ∗1 +O(Cu4), where u∗ and
τ∗ are the dimensionless velocity field and deviatoric stress fields,
respectively. In this way, the non-Newtonian deviatoric stress is

τ∗NN = Cu2τ∗NN,1 +O(Cu4)
= −1

2
Cu2(1 − β)(1 − n)�γ̇∗0 �2γ̇∗0 +O(Cu4). (15)

Writing similarly for the orientational dynamics of the spheroid
Ω∗ = Ω∗0 + Cu2Ω∗1 +O(Cu4), we find, by way of Eqs. (12) and (15),
that

Ω∗1 = −R̂∗−1LΩ ⋅�
V

τ∗NN,1 : Ê
∗
Ω dV∗

= 1
2
(1 − β)(1 − n)R̂∗−1LΩ ⋅�

V

�γ̇∗0 �2γ̇∗0 : Ê∗Ω dV∗. (16)

We see that the change in the orientational dynamics depends only
on the Newtonian velocity field u∗0 to the leading order in Cu. The
main mathematical task of this work is to calculate and integrate the
tensor �γ̇∗0 �2γ̇∗0 : Ê∗Ω over the entire fluid domain V. This is a rather
involved integral, and therefore, we want to use as amenable a rep-
resentation of the Newtonian solution as possible. To this end, we
use a solution based on an expansion in spheroidal multipoles taken
directly from Einarsson et al.26 For completeness, we repeat details
of that solution in the Appendices A and B of this work.

For simplicity, we now drop the ∗’s and use only dimensionless
variables from this point on unless explicitly stated otherwise.

III. RESULTS

A. Jeffery orbits
The solution to the zeroth order (Newtonian) problem yields

the classical Jeffery orbits of an ellipsoidal particle in shear flow. The
solution obtained by Jeffery19 involved solving for the disturbance

flow field, but it can also be found by directly integrating (13). The
angular velocity of a prolate ellipsoid in a Newtonian fluid is

Ω0 = Ω∞ + Λp × E∞ ⋅ p, (17)

where Λ = λ2−1
λ2+1 , while the evolution of the director is

ṗ = Ω0 × p = Ω∞ × p + Λ (I − pp) ⋅ E∞ ⋅ p. (18)

Jeffery’s results showed that, unlike a point particle or a sphere, a
prolate spheroid not only rotates with the (constant) local angular
velocity of the flow but, given that object is elongated and unevenly
samples the velocity field about its center, also has a rotational
component that depends on the orientation and aspect ratio of the
spheroid.

Assuming a background flow field (as we do throughout this
paper)

u∞ = yex (19)

and ϕ = 0 at t = 0, leads to Jeffery orbits of the form

tanϕ = λ tan� λt
1 + λ2 �,

tan θ = Cλ�
sin2ϕ + λ2cos2ϕ

,
(20)

whereC is a constant of integration and the axis of revolution rotates
in one of infinitely many possible periodic orbits depending on the
value of C. Figure 2 shows Jeffery orbits for different values of C on
a unit sphere. The Jeffery orbit on the equator of the sphere, C→∞,
is called the tumbling orbit because the vector p tumbles in the flow-
shear plane. The orbit at the pole of the sphere, C = 0, where p is
aligned with the vorticity direction, is called log-rolling. The period
T0 = 2π(λ2 + 1)/λ is constant for particles of the same aspect ratio
and does not depend on the initial orientation of the particle (in
dimensional terms, the period scales with 1�γ̇c). Note that the angu-
lar velocity of the particle is not constant in time, but that the particle
slows down when p tends to the flow direction.51

FIG. 2. Trajectories in the orientation of a prolate spheroid with aspect ratio λ = 5
in a linear shear flow of Newtonian fluids for various different initial positions.
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FIG. 3. Modified orbits (red lines) in the presence of shear thinning and Newtonian orbits (blue lines) for (a) different initial conditions of θi = 0, π/12, π/4, π/3, 5π/12, 11π/24,
π/2 and ϕi = 0, (b) different initial conditions of ϕi = π/2, π/4, 0 on a specific Jeffery orbit passing (θi , ϕi ) = (5π/12, 0), (c) different Carreau numbers of Cu = 0, 0.1, 0.12, 0.14,
0.16 for two different initial conditions of (θi , ϕi ) = (π/3, 0), (0.33, π/2) belonging to a Jeffery orbit, and (d) different values of aspect ratios λ = 1, 2, 3, 4, 5 for (θi , ϕi ) = (π/3,
0). Calculations are carried out for Cu = 0.1 and λ = 5 unless otherwise stated.

B. Dynamics of a prolate spheroid in shear flow
of a shear-thinning fluid

The zeroth order (Newtonian) solution of the flow field is lin-
ear, and thus, we must be able to write γ̇0 = M : E∞, where M is a
fourth order tensor that depends on the orientation of the particle
alone. Substituting into (16), we obtain for each component ofΩ1,

�1j = (1 − β)(1 − n)2
R̂−1L�,jtE∞ls E∞pq E∞g f �

V

MimslMmipqMuvfg Ê�,vut dV ,

(21)

where repeated indices are summed. Although M is constructed
from a known Newtonian solution, the details are quite compli-
cated (as shown in Appendix B). This tensor product contains hun-
dreds of terms and analytical evaluation of the integral proves more
or less intractable, and so this integral is performed numerically.
After calculation of all the tensors, a trapezoidal rule in spheroidal

coordinates is used for the integration with singular terms evaluated
analytically.

Upon resolution ofΩ1, we calculate the periodic orbits of p in a
shear-thinning fluid to leading order in Cu; specifically, we integrate

ṗ = (Ω0 + Cu2Ω1) × p (22)

forward in time. An RK4 method is used for the time derivative of
the particle’s orientation, and the orientation is expressed by angles
θ and ϕ rather than vector p to ensure the unity of its magnitude.

The dynamics of the spheroid can be divided into a rotation
around the vorticity axis, ϕ (spinning), and rotation about the veloc-
ity axis, θ (oscillating). While the period in a Newtonian fluid, T0, is
determined only by the particle shape and shear-rate, the period in a
non-Newtonian fluid, T, is highly dependent on the initial position
of the particle and Cu number in shear-thinning fluids.

In Fig. 3, we show Jeffery orbits modified by shear thinning
for different situations: (a) different initial positions θi (for ϕi = 0),

FIG. 4. Phase portraits of (a) θ and (b) ϕ, while (c) shows ϕ(t) over one full period (with the period, T, shown in the inset). Various different Cu numbers are shown while
dashed lines indicate the Newtonian case. The results are for (θi , ϕi ) = (π/3, 0) and λ = 5, while the dotted lines in (a) show (θi , ϕi ) = (0.33, π/2).

Phys. Fluids 31, 103106 (2019); doi: 10.1063/1.5125468 31, 103106-5

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 5. Phase portraits of (a) θ and (b) ϕ, while (c) shows ϕ(t) over one full period (with the period, T, shown in the inset), for different initial conditions of θi = π/12, π/4, π/3,
5π/12, 11π/24. Thick and thin lines correspond to Cu = 0.15 and Cu = 0.1, respectively, while dashed lines indicate the Newtonian case. The results are for λ = 5.

(b) different initial positions on a specific Newtonian Jeffery orbit
passing (θi, ϕi) = (5π/12, 0), (c) different values of Cu, and finally, (d)
different aspect ratios λ. In these results and all that follow, we take
values of β = 0.5 and n = 0.5. We also take Cu = 0.1 and λ = 5 unless
otherwise stated. The first thing to note in the figures is that shear-
thinning rheology does not lift the degeneracy of the Jeffery orbits
observed in Newtonian fluids, unlike the effects of fluid elasticity
or inertia. There are still infinitely many modified “Jeffery” orbits,
selected by the initial condition, that repeat periodically for all time.
Indeed, this is somewhat expected given that the generalized Newto-
nian fluid constitutive equation (5) maintains the symmetries of the
Stokes equations, and so one should not expect a symmetry-breaking
drift of the orbits in time. In general, we observe that shear thinning
tends to narrow the orbits in much the same way that an elongation

of the particle aspect ratio does [compare Figs. 3(a) and 3(c) with
Fig. 3(d)]. The change in a particular Newtonian Jeffery orbit due to
shear thinning depends on the initial position, as shown in Fig. 3(b),
because of course the orbits are not continuously overlapping.

As the aspect ratio of the particle increases, the particle spends a
larger amount of time aligned with the flow as the torque due to the
applied background flow is diminished in comparison to the hydro-
dynamic resistance to rotation, as dictated by (13), and thus, the
period of rotation increases. Much of the same thing happens with
shear thinning, where the torque is reduced due to changes in the
viscosity. These changes in the dynamics are illustrated in Figs. 4(a)
and 4(b). In particular, note in Fig. 4(b) that the effects of shear thin-
ning on the particle spin (ϕ̇) are only apparent when the particle is
aligned with the flow, ϕ ≈ nπ, where shear dominates and hence the

FIG. 6. Phase portraits of (a) θ and (b) ϕ, while (c) shows ϕ(t) over one full period (with the period, T, shown in the inset), for different aspect ratios of λ = 1, 2, 3, 4, 5. Thick
and thin lines correspond to Cu = 0.15 and Cu = 0.1, respectively, while dashed lines indicate the Newtonian case. The results are carried out for (θi , ϕi ) = (π/3, 0).
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particle is slowed further due to a reduction in the viscosity. When
the (slender) particle is aligned with the velocity gradient, changes in
viscosity are less relevant, as the particle is essentially pushed around
its orbit. Similar results were given for two-dimensional particles in
Férec et al.45 We note that while changes in the absolute value of the
rotation rate might be small, the changes in the period of rotation
can be dramatic if the angular velocity is close to zero, as shown in
Fig. 4(c); however, while the instantaneous velocity of the particle
may be accurate in either the Newtonian case, or the correction we
calculate here, neglected effects, such as inertia, particle eccentricity,
and idealizations used in Carreau model, will cumulatively affect the
orbit of particle integrated over time.

As shown in Fig. 5, the effect of shear thinning varies quantita-
tively depending on the particular orbit, but the qualitative picture is
similar. In particular, the period of each orbit depends on the initial
position; unlike in a Newtonian fluid, in a shear-thinning fluid, each
orbit has a different period.

Different orbits for different aspect ratios, λ, are shown in Fig. 6.
In case of a sphere, λ = 1, the period does not change at all. In other
words, the spherical particle is unaffected by shear thinning, as dis-
cussed in the work of Datt and Elfring.34 For higher aspect ratios, the
orbit slows when the particle is aligned with the flow, as shown in
Fig. 6(b), and the period T thereby increases, as shown in Fig. 6(c).
We find that shear-thinning rheology exacerbates this effect, more
substantially increasing the period for larger λ as the shear stresses,
which are needed to rotate a long slender particle aligned with the
flow, are reduced by shear thinning.

IV. CONCLUSION
In this work, we investigated the orientational dynamics of a

prolate spheroid immersed in a background shear flow of a shear-
thinning Carreau fluid. An equation of motion for the rotation of
the prolate particle was derived for asymptotically weak shear thin-
ning using a regular perturbation expansion in the Carreau number
and then integrated numerically. We found that shear-thinning rhe-
ology does not lift the degeneracy of the Jeffery orbits observed in
a Newtonian fluid. In shear-thinning fluids, there are still infinitely
many orbits that repeat periodically for all time, each selected by
the initial condition. However, the instantaneous rotation rate and
trajectories of the orbits are modified. Qualitatively, shear thinning
has a similar effect as elongating a particle in a Newtonian fluid:
shear thinning tends to increase the period of rotation as the particle
slows down more when aligned with the flow due to a reduction in
shear stress. Unlike for Jeffery orbits in Newtonian fluids, in shear-
thinning fluids, the period of the orbits does depend on the specific
trajectory (or the initial orientation of the particle) because the effect
of shear thinning varies depending on the orientation of the particle.
The results presented in this work can serve as a base for further
investigation into the rheology of anisotropic particles suspended in
shear-thinning fluids.
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APPENDIX A: SPHEROIDAL MULTIPOLES
Here, we give the solution to the Stokes equations for a spheroid

with the aspect ratio of λ in a shear flow, following the work of
Einarsson et al.,26 in terms of a finite multipole expansion.52

To this end, the Green’s function, G, of the Stokes equations
and derivatives will be utilized, and these are in the component
form

Gij = δij
r +

xixj
r3 , Stokeslet, (A1)

Gd
ijk = Gij,k = δjkxi + δikxj − δijxk

r3 − 3xixjr5 , dipole, (A2)

GD
ij = Gij,ll = 2δijr3 − 6

xixj
r5 , potential doublet, (A3)

GR
ijk = 1

2
(Gij,k −Gik,j) = δikxj − δijxk

r3 , rotlet, (A4)

GS
ijk = 1

2
(Gij,k +Gik,j) = δkjxi

r3 − 3
xixjxk
r5 , stresslet, (A5)

GQ
ijk = Gij,llk = −6δjkxi + δikxj + δijxk

r5

+ 30
xixjxk
r7 , potential quadrupole. (A6)

Representation of the flow around a spheroidal particle requires
a weighted distribution of the above multipoles. Spheroidal multi-
poles are found by employing a line distribution of Stokeslets and
derivatives between the foci ξ = −c to c given by

Qij = � c

−c dξGij(x − ξp), (A7)

QD
ij = � c

−c dξ(c2 − ξ2)GD
ij (x − ξp), (A8)

QR
ijk = � c

−c dξ(c2 − ξ2)GR
ijk(x − ξp), (A9)

QS
ijk = � c

−c dξ(c2 − ξ2)GS
ijk(x − ξp), (A10)

QQ
ijk = � c

−c dξ(c2 − ξ2)2GQ
ijk(x − ξp), (A11)

where c2 = a2(λ2 − 1)/λ2.
Explicit expressions for spheroidal multipoles in terms of inte-

grals of the stresslet, rotlet, and quadrupole are given in Einarsson
et al.,26 and we add higher-order multipoles as needed here

Qij = δijI01 + xixjI03 − (xipj + xjpi)I13 + pipjI23 , (A12)

QD
ij = 2δijJ03 + 6� − xixjJ05 + (xipj + xjpi)J15 − pipjJ25�, (A13)

QR
ijk = (δikxj − δijxk)J03 + (δijpk − δikpj)J13 , (A14)
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QS
ijk = δjkxiJ03 − δjkpiJ13 + 3� − xixjxkJ05 + (xixkpj + xjxkpi + xixjpk)J15 − (xkpipj + xipjpk + xjpipk)J25 + pipjpkJ35�, (A15)

QQ
ijk = 6� − (δjkxi + δikxj + δijxk)K0

5 + (δjkpi + δikpj + δijpk)K1
5�

+30�xixjxkK0
7 − (xixkpj + xjxkpi + xixjpk)K1

7 + (xkpipj + xipjpk + xjpipk)K2
7 − pipjpkK3

7�, (A16)

QR
ijk, m = (δikδjm − δijδkm)J03 + 3(δikxj − δijxk)(pmJ15 − xmJ05) + 3(δijpk − δikpj)(pmJ25 − xmJ15) (A17)

QS
ijk, m = δjkδimJ03 + 3δjkxi(pmJ15 − xmJ05) − 3δjkpi(pmJ25 − xmJ15) + 3� − (δimxjxk + δjmxixk + δkmxixj)J05 − 5xixjxk(pmJ17 − xmJ07)

+ (δimxkpj + δkmxipj + δjmxkpi + δkmxjpi + δimxjpk + δjmxipk)J15 + 5(xixkpj + xjxkpi + xixjpk)(pmJ27 − xmJ17)
− (δkmpipj + δimpjpk + δjmpipk)J25 − 5(xkpipj + xipjpk + xjpipk)(pmJ37 − xmJ27) + 5pipjpk(pmJ47 − xmJ37)�, (A18)

QQ
ijk, m = 6� − (δjkδim + δikδjm + δijδkm)K0

5 − 5(δjkxi + δikxj + δijxk)(pmK1
7 − xmK0

7) + 5(δjkpi + δikpj + δijpk)(pmK2
7 − xmK1

7)�
+30�(δimxjxk + δjmxixk + δkmxixj)K0

7 + 7xixjxk(pmK1
9 − xmK0

9) − (δimxkpj + δkmxipj + δjmxkpi + δkmxjpi + δimxjpk + δjmxipk)K1
7

− 7(xixkpj + xjxkpi + xixjpk)(pmK2
9 − xmK1

9) + (δkmpipj + δimpjpk + δjmpipk)K2
7

+ 7(xkpipj + xipjpk + xjpipk)(pmK3
9 − xmK2

9) − pipjpkK3
7�, (A19)

where

Inm = � c

−c dξ
ξn�x − ξp�m , (A20)

Jnm = c2Inm − In+2m , (A21)

Kn
m = c2Jnm − Jn+2m = c4Inm − 2c2In+2m + In+4m . (A22)

The integrals Inm satisfy the relationship

@

@xi
Inm = mpiIn+1m+2 −mxmInm+2. (A23)

To simplify integration, one may employ an auxiliary coordinate
system, (x′, y′, z′), with p aligned with x′ such that

Inm = � c

−c dξ
ξn

[(x′ − ξ)2 + (y′)2 + (z′)2]m�2
= � c

−c dξ
ξn

[(x′ − ξ)2 + R2]m�2 , (A24)

where R2 = (y′)2 + (z′)2. The required integrals are

I0−1 = 1
2
�R2 log�R2 − (x′ − c)

R1 − (x′ + c)� + c(R1 + R2) − (R2 − R1)x′�,
(A25)

I01 = log�R2 − (x′ − c)
R1 − (x′ + c)�, (A26)

I11 = R2 − R1 + x′ log�R2 − (x′ − c)
R1 − (x′ + c)�, (A27)

I21 = 1
2
��2x′2 − R2� log�R2 − (x′ − c)

R1 − (x′ + c)�
+ c(R1 + R2) + 3(R2 − R1)x′�, (A28)

I03 = 1
R2 �x

′ + c
R1
− x′ − c

R2
�, (A29)

I13 = 1
R1
− 1
R2

+
x′
R2 �x

′ + c
R1
− x′ − c

R2
�, (A30)

I05 = 1
3R4

�������
�x′ + c��2�x′ + c�2 + 3R2�

R3
1

− �x
′ − c��2�x′ − c�2 + 3R2�

R3
2

�������
, (A31)

I15 = 1
3R4

������
�2c3 + 3cR2�x′ + 3�2c2 + R2�x′2 + 6cx′3 + R4 + 2x′4

R3
1

+
�2c3 + 3cR2�x′ − 3�2c2 + R2�x′2 + 6cx′3 − R4 − 2x′4

R3
2

������, (A32)
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I07 = 1
15R6

������
�x′ + c��8c4 + 8�4c3 + 5cR2�x′ + 4�12c2 + 5R2�x′2 + 20c2R2 + 32cx′3 + 15R4 + 8x′4�

R5
1

− �x′ − c��8c4 − 8�4c3 + 5cR2�x′ + 4�12c2 + 5R2�x′2 + 20c2R2 − 32cx′3 + 15R4 + 8x′4�
R5
2

������, (A33)

I17 = 1
15R6

������
1
R5
2
� − 3R6 + �8c5 + 20c3R2 + 15cR4�x′ − 5�8c4 + 12c2R2 + 3R4�x′2 + 20�4c3 + 3cR2�x′3 − 20�4c2 + R2�x′4 + 40cx′5 − 8x′6�

− 1
R5
1
� − 3R6 − �8c5 + 20c3R2 + 15cR4�x′ − 5�8c4 + 12c2R2 + 3R4�x′2 − 20�4c3 + 3cR2�x′3 − 20�4c2 + R2�x′4 − 40cx′5 − 8x′6�������, (A34)

I09 = 1
35R8

������
1
R7
1
�c�16c6 + 56c4R2 + 70c2R4 + 35R6� + 7�16c6 + 40c4R2 + 30c2R4 + 5R6�x′ + 14c�24c4 + 40c2R2 + 15R4�x′2

+ 70�8c4 + 8c2R2 + R4�x′3 + 280c�2c2 + R2�x′4 + 56�6c2 + R2�x′5 + 112cx′6 + 16x′7�
+

1
R7
2
�c�16c6 + 56c4R2 + 70c2R4 + 35R6� − 7�16c6 + 40c4R2 + 30c2R4 + 5R6�x′ + 14c�24c4 + 40c2R2 + 15R4�x′2

− 70�8c4 + 8c2R2 + R4�x′3 + 280c�2c2 + R2�x′4 − 56�6c2 + R2�x′5 + 112cx′6 − 16x′7�������, (A35)

I19 = 1
35R8

������
1
R7
1
�5R8 + �16c7 + 56c5R2 + 70c3R4 + 35cR6�x′ + 7�16c6 + 40c4R2 + 30c2R4 + 5R6�x′2 + 14�24c5 + 40c3R2 + 15cR4�x′3

+ 70�8c4 + 8c2R2 + R4�x′4 + 280c�2c2 + R2�x′5 + 56�6c2 + R2�x′6 + 112cx′7 + 16x′8�
+

1
R7
2
� − 5R8 + �16c7 + 56c5R2 + 70c3R4 + 35cR6�x′ − 7�16c6 + 40c4R2 + 30c2R4 + 5R6�x′2 + 14�24c5 + 40c3R2 + 15cR4�x′3

− 70�8c4 + 8c2R2 + R4�x′4 + 280c�2c2 + R2�x′5 − 56�6c2 + R2�x′6 + 112cx′7 − 16x′8�������, (A36)

where on the surface of the particle we have

R1 =�(x′ + c)2 + R2,

R2 =�(x′ − c)2 + R2,

R =�(1 − e2)(a2 − x′2).
(A37)

The integrals also satisfy the relationship

Inm = x′In−1m +
(n − 1)In−2m−2

m − 2 − cn−1�(−1)nR2−m
1 + R2−m

2 �
m − 2 . (A38)

Other integrals Jnm and Kn
m can be calculated easily from Eqs. (A21)

and (A22).

APPENDIX B: A PROLATE SPHEROID IN STOKES FLOW
Following the work of Einarsson et al.,26 we use the following

ansatz for the disturbance flow field due to a prolate spheroid in a

linear shear flow:

u′i = QR
ijk�jkl� − �ARplpm + BR(δlm − plpm)��′m + CR�lmnpmE∞no po�

+ �QS
ijk + αQQ

ijk��(ASnAjklm + BSnBjklm + CSnCjklm)E∞lm
+CR(�jlmpkpm + �klmpjpm)�′l�, (B1)

where AR, BR, CR, AS, BS, CS, and α are seven unknown scalar coef-
ficients and are calculated by enforcing the no-slip boundary condi-
tion on the surface of the spheroid (see the work of Einarsson et al.26
for further details). Also,

nAjklm = (pjpk − 1
3
δjk)(plpm − 1

3
δlm), (B2)

nBjklm = pjpmδkl + pkpmδjl + pjplδkm + pkplδjm − 4pjpkplpm, (B3)

nCjklm = −δjkδlm + δjlδkm + δklδjm + plpmδjk + pjpkδlm
− pjpmδkl − pkpmδjl − pjplδkm − pkplδjm + pjpkplpm. (B4)
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The constants for a prolate spheroid are

α = 1 − e2
8e2 , (B5)

AR = e2 − 1
2L(e2 − 1) + 4e , (B6)

BR = e2 − 2
2L(e2 + 1) − 4e , (B7)

CR = − e2

2L(e2 + 1) − 4e , (B8)

AS = − e2

2(L(e2 − 3) + 6e) , (B9)

BS = e2�L�e2 − 1� − 4e3 + 2e�
4(−3L(e2 − 1) + 4e3 − 6e)(L(e2 + 1) − 2e) , (B10)

CS = e2 − e4
3L(e2 − 1)2 + 2e(5e2 − 3) , (B11)

L = log�− e + 1
e − 1�. (B12)

1. Jeffery orbits
The torque on a spheroid can be calculated by linearly

superposing the contributions from all the contained rotlets,
ui = QR

ijk�jklBl, as

L0 = −16π� c

−c (c2 − ξ2)dξB = −
64πc3

3
B, (B13)

where from (B1) the rotlet strength is

B = −�ARpp + BR(I − pp)� ⋅Ω′0 + CRp × (E∞ ⋅ p). (B14)

Ultimately, because the torque on the body is zero, then the rotlet
strength must be zero and hence B = 0. The Jeffery orbit solution
immediately follows as this requires that

Ω0 = Ω∞ + Λp × E∞ ⋅ p,
where Λ = CR/BR.

The disturbance flow field may now be written more simply as

u0i = A∞ij xj + �QS
ijk + αQQ

ijk�DjklmE∞lm , (B15)

where

Djklm =ASnAjklm +BSnBjklm +CSnCjklm +CRΛ(�jqtpkpt + �kqtpjpt)�pqlpppm.
(B16)

From this solution of the Newtonian disturbance flow, the
strain-rate tensor maybe be calculated

γ̇0 =M : E∞, (B17)

where
Mimsl = 2δilδms + �QST

ijkm + αQQT
ijkm�Djkls, (B18)

and we have defined QST
ijkm = QS

ijk, m + QS
mjk, i and QQT

ijkm = QQ
ijk, m

+QQ
mjk, i.

APPENDIX C: SHEAR-THINNING CORRECTION
In order to calculate the correction in the orientational dynam-

ics of the prolate spheroid due to shear thinning given by (16),

Ω1 = 1
2
(1 − β)(1 − n)R̂−1LΩ ⋅�

V

�γ̇0�2γ̇0 : ÊΩ dV ,

we need both the strain-rate tensor of the Newtonian solution, γ̇0,
given by (B17) and the operators R̂−1LΩ and ÊΩ from the rigid-body
motion problem that we now show.

1. Rigid-body motion
The flow field due to a prolate spheroid rotating with Ω̂ in a

quiescent flow, obtained from (B1), is

ûi = �−�jklQR
ijk�ARplps + BR(δls − plps)�

+�QS
ijk + αQQ

ijk�CR(�jsmpkpm + �ksmpjpm)��̂s. (C1)

The strain-rate tensor is then

ˆ̇γ = 2ÊΩ ⋅ Ω̂, (C2)

where

Ê�ims = 1
2
� − �jklQRT

ijkm�ARplps + BR(δls − plps)�
+ �QST

ijkm + αQQT
ijkm�CR(�jsmpkpm + �ksmpjpm)�, (C3)

and QRT
ijkm = QR

ijk, m +QR
mjk, i.

The torque exerted on the particle can be found by integrating
the rotlet density such that

L̂ = 16π� c

−c dξ(c2 − ξ2)�ARpp + BR(I − pp)� ⋅ Ω̂,

= 64πc3

3
�ARpp + BR(I − pp)� ⋅ Ω̂. (C4)

Using the definition of the resistance, L̂ = −R̂LΩ ⋅ Ω̂, we obtain

R̂−1LΩ = − 3
64πc3 � 1

AR pp +
1
BR (I − pp)�. (C5)
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