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Microswimmers in nature often experience spatial gradients of viscosity. In this Letter we develop
theoretical results for the dynamics of active particles, biological or otherwise, swimming through viscosity
gradients. We model the active particles using the squirmer model, and show how viscosity gradients lead
to viscotaxis for squirmers, and how the effects of viscosity gradients depend on the swimming gait of the
microswimmers. We also show how such gradients in viscosity can be used to control active particles and
suggest a mechanism to sort them based on their swimming style.
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Cells often swim in environments, such as biofilms and
mucus layers, that have spatial gradients of viscosity [1,2].
Much like the effect of other gradients, such as light (leading
to phototaxis [3]), chemical stimuli (chemotaxis [4]),
magnetic fields (magnetotaxis [5]), temperature (thermo-
taxis [6]), or gravitational potential (gravitaxis [7]), gra-
dients of viscosity can lead to viscotaxis in microswimmers.
Bacteria like Leptospira and Spiroplasma are known to
move up the viscosity gradients (positive viscotaxis) [8,9],
whereas Escherichia coli demonstrates negative viscotaxis
[10]. It is suggested that viscotaxis plays an adaptive role in
microorganisms; it prevents them from being stuck in
regions where they are poor swimmers [8–10]. This migra-
tion across regions of different viscosity affects organisms’
population distribution, and possibly their virulence [11].
The aggregation of microswimmers in specific regions of
viscosity may also be used for sorting of cells [12].
Recent works have investigated the effect of viscosity

gradients on the motion of both passive and active (swim-
ming) particles. Laumann and Zimmermann [13] have
shown that viscosity gradients can be used to sort soft
passive particles in microflows using cross-streamline
migration. Oppenheimer et al. [14] considered the dynam-
ics of a hot particle in a fluid where variations in viscosity
are due to the temperature difference between the particle
and its surroundings. In terms of active particles, the works
of Liebchen et al. [15] and Eastham and Shoele [16] have
investigated the motion of model swimmers as they move
through gradients of viscosity in an otherwise Newtonian
fluid. Liebchen et al. [15] studied the physical mechanism
of viscotaxis, using assemblies of one, two, and three
spheres with effective propulsion forces as model
swimmers, and showed how viscotaxis can emerge from
a mismatch of viscous forces on different parts of the
swimmer, thereby demonstrating the possibility of both
positive and negative viscotaxis, i.e., motion towards or
away from regions of higher viscosity, respectively. In

particular, they proved that, for these model swimmers,
uniaxial swimmers do not display viscotaxis. Guasto et al.
also recently implemented a systematic experimental inves-
tigation of viscotaxis with microalgae [17]. Eastham and
Shoele [16] studied an adaptation of a common model
microswimmer—the squirmer [18–20]—as it moves
through fluids in which viscosity is a function of the
concentration of nutrients. They find that the coupling
between viscosity and nutrient concentration can lead to
qualitative differences in the swimming motion compared
to fluids with constant viscosity.
In this Letter, we study viscotaxis using the classical

spherical squirmer model [18–20]. Squirmers can be used
to model different types of swimmers, from biological
micro-organisms to diffusiophoretic Janus particles, within
the same theoretical framework, and have been used in
understanding swimming at small scales in both Newtonian
(e.g., see [20] and references within) and non-Newtonian
fluids (e.g., [21–26]). The squirmer model allows us to
study the response of different classes of microwswimmers,
namely, pushers, pullers, and neutral swimmers, to spatial
gradients in viscosity. We neglect any variations in viscos-
ity gradients due to the motion of the fluid; i.e., we assume
the Péclet number associated with the diffusion of the
viscosity field is small [16,27]. Notably we find that, in
contrast to the results in Liebchen et al. [15], these uniaxial
swimmers all display (negative) viscotaxis due to the effect
of viscosity gradients on the thrust generated by the
swimming gait (an effect not included in that work). We
also find that the three types of swimmers behave differ-
ently in viscosity gradients, and discuss how their different
swimming dynamics can be used to sort them based on
their swimming style. In the following, we first present the
theoretical formulation of the problem, followed by results
and discussion.
In the squirmer model a microswimmer is represented

as a sphere with a prescribed surface velocity that
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approximates the detailed propulsion mechanism of the
swimmer [18]. We consider axisymmetric squirmers with
steady tangential surface velocities uS ¼ uSeϕ, where
uS ¼ Σ∞

l¼1BlVlðϕÞ, and VlðϕÞ ¼ −2P1
l ðcosϕÞ=½lðlþ 1Þ�

with P1
l being the associated Legendre function of the

first kind and ϕ the polar angle measured from the axis of
symmetry of the swimmer [18,19]. The orientation of the
swimmer along the axis of symmetry is denoted by the unit
vector e. The coefficients Bl are called the squirming
modes. In fluids with constant viscosity, the propulsion
velocity of the squirmer is due to just the first mode B1,
whereas B2 gives the strongest contribution to the flow far
from the swimmer [19,28,29]. Without loss of generality
we take B1 ≥ 0. For swimmers that generate thrust from the
front, the puller type (like Chlamydomonas), the ratio α ¼
B2=B1 is greater than zero, and for those that generate
thrust from the rear (like Escherichia coli), α < 0. When
α ¼ 0 we have neutral squirmers. We note that the swim-
ming gait, and thus the surface velocities of a squirmer, may
be affected by changes in viscosity, but here we assume it
remains fixed. Similarly to Liebchen et al. [15], we neglect
thermal fluctuations and consider here only the determin-
istic motion of the squirmers.
We consider Newtonian fluids with spatial gradients of

viscosity that may arise, for example, due to temperature or
due to gradients of concentration of solute. We consider
only small variations in viscosity to allow analytical
progress [14,27], representing the viscosity field as
ηðxÞ ¼ η0 þ εη1ðxÞ, where ε ≪ 1 is a small dimensionless
parameter representing the characteristic magnitude of the
change in viscosity Δη=η0. We primarily consider linear
viscosity fields with slope η0=L (in the ex direction for
example) so that

∇η ¼ η0
L
ex: ð1Þ

Provided the length L is much larger than the size of the
swimmer of radius a such that ε ¼ a=L ≪ 1, the viscosity
varies only weakly in the vicinity of the particle. In this case
η1 ¼ η0ðx − x0Þ=a, and η0 occurs at an arbitrary point x0 in
the fluid.
We neglect any fluid and solid body inertia, and study

microswimmers at zero Reynolds number. In the absence of
inertia, the velocity of an active (or passive) particle in a
fluid of arbitrary rheology may be written as

U ¼ R̂−1
FU · ½Fext þ FS þ FNN �; ð2Þ

where U ¼ ½U Ω�⊤ is a six-dimensional vector comprising
of rigid-body translational and rotational velocities whereas
F ¼ ½F L�⊤ represents force and torque. The expression (2)
can be easily derived using the reciprocal theorem of low
Reynolds number flows and its formulation as described in
[30]. For freely swimming density matched bodies the
external force Fext ¼ 0.

The propulsive force (thrust or swim force [31]),

FS ¼
Z
∂B

uS · ðn · T̂UÞdS; ð3Þ

is due to any surface deformation or activity, uS, of the
particle in a Newtonian fluid of uniform viscosity η0. Here∂B represents the surface of the particle.
The contribution due to a deviation from a Newtonian

fluid with uniform viscosity, is given by

FNN ¼ −
Z
V
τNN∶ÊUdV: ð4Þ

This term represents the extra force and torque on the
particle due to the extra deviatoric stress τNN in the fluid
volume V in which the particle is immersed. The total
deviatoric stress in the fluid is τ ¼ η0 _γ þ τNN and so in our
case τNN ¼ εη1 _γ.
Finally, the hat quantities are linear operators from the

resistance problem of a body of the same shape in a
Newtonian fluid of uniform viscosity η0, _̂γ=2 ¼ ÊU · Û,
σ̂ ¼ T̂U · Û, F̂ ¼ −R̂FU · Û, which in this case is, the rigid-
body motion of a single sphere in an unbounded and
otherwise quiescent Newtonian fluid, and therefore ÊU; T̂U,
and R̂FU are well known.
The extra stress τNN requires resolution of the flow field

generated by the swimmer in a fluid with a nonuniform
viscosity. This task is made simpler by considering small
deviations from a uniform viscosity ε ≪ 1 and thus
constructing τNN asymptotically. To study the effect of
small viscosity variations, we expand flow quantities in a
regular perturbation expansion of ε, e.g., fu; p; τg ¼
fu0; p0; τ0g þ εfu1; p1; τ1g þ ε2fu2; p2; τ2gþ;…, where
fu0; p0; τ0g are the velocity, pressure, and deviatoric stress
solution to Stokes equations for Newtonian fluids with
uniform viscosity η0, since at the leading order, τ0 ¼ η0 _γ0.
At OðεÞ, τ1 ¼ η0 _γ1 þ η1ðxÞ_γ0, so that, τNN;1 ¼ η1ðxÞ_γ0.
The extra force and torque on the particle from (4) then take
the form

FNN ¼ −ε
Z
V
η1ðxÞ_γ0∶ÊUdV þOðε2Þ; ð5Þ

LNN ¼ −ε
Z
V
η1ðxÞ_γ0∶ÊΩdV þOðε2Þ: ð6Þ

We consider corrections up to OðεÞ in this Letter.
Note that the above expansion is valid provided that

η1=η0 ∼Oð1Þ, and this is in principal not true for
r ∼Oð1=εÞ. However, for a squirmer the far field contri-
bution, when r ∼Oð1=εÞ, is Oðε2Þ for the extra force and
Oðε3Þ for the extra torque and can therefore be neglected as
we consider corrections to Newtonian-uniform-viscosity
motion up to onlyOðεÞ. The velocity field due to motion of
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a passive sphere decays more slowly than that of a squirmer
and so, in principle, the far-field would contribute.
However, in linear viscosity fields, the far-field contribu-
tion to the integrals atOð1Þ is identically zero by symmetry.
Passive particles.—In order to build intuition about the

influence of viscosity gradients, we first study the motion
of a passive sphere in viscosity gradients. The hydro-
dynamic force F and torque L on a rigid sphere of radius a
moving with translational velocity U and angular velocity
Ω in a linear viscosity field (1), is found to be, up to OðεÞ,

F ¼ −6πaη0Uþ 2πa3∇η ×Ω; ð7Þ

L ¼ −8πη0a3Ω − 2πa3∇η × U: ð8Þ

The gradient in viscosity couples the force with the sphere’s
angular velocity, and the torque with the translational
velocity; these couplings are absent for a sphere in a
Newtonian fluid with uniform viscosity. The coupling is
symmetric, which may be proved by the reciprocal theorem
as shown by Oppenheimer et al. [14].
Oppenheimer et al. [14] studied the case of viscosity

gradients induced by a hot particle in a viscous fluid. In this
instance the viscosity field may be taken to be

η ¼ η0

�
1 − ε

a
r

�
; ð9Þ

where r is the distance from the particle of radius a. As a
consistency check we reproduce their results using
equation (5).
Active particles.—We now consider the motion of active

particles in viscosity gradients. We first look at the case
where viscosity variations are due to the squirmer itself,
following [14] we take the viscosity field as in (9) and find
that the translational velocity of the squirmer is

U ¼ 2B1

3

�
1 −

ε

12

�
e; ð10Þ

where e is the orientation of the squirmer. This indicates
that a squirmer swimming in a region of radially increasing
viscosity around it swims more slowly than in a Newtonian
fluid with uniform viscosity. Because τNN is linear, this
result can be understood by decomposing the swimming
problem into a thrust problem and a drag problem [21]. In
the thrust problem, the squirmer is held fixed and the
propulsive force due to its surface velocity is calculated,
while in the drag problem, the drag on a passive sphere
translating with the velocity of the squirmer is calculated;
τNN is formed by the uniform-viscosity thrust problem and
the uniform-viscosity drag problem, respectively. Such a
decomposition shows that the viscosity gradient leads to a
reduction in both the thrust (by 2πεη0aB1e) and the drag
(by 5π=3εη0aB1e), but because the reduction in the thrust

is greater we obtain slower swimming, much like one
observes in a shear-thinning fluid [21]. The angular
velocity of the squirmer is zero in this case by symmetry.
We now consider squirmers in linear viscosity fields

such as (1). In this case, exact expressions for the trans-
lational and angular velocities of general squirmers can be
obtained. These are, up to OðεÞ,

U ¼ UN −
aB2

5
ðI − 3eeÞ·∇ðη=η0Þ; ð11Þ

Ω ¼ −
1

2
UN × ∇ðη=η0Þ; ð12Þ

where UN ¼ ð2B1=3Þe is the velocity in a (Newtonian)
fluid with uniform viscosity (ΩN ¼ 0). Of all squirming
modes Bl, only the first two contribute to the translational
and rotational velocities in the linear gradients considered
here. Note that the gradient in viscosity affects both the
translational and angular velocities of the squirmer; even an
axisymmetric squirmer can now rotate due to its own
motion. The rotation of the squirmer is driven by its
translational velocity and is in the opposite sense to that
of a passive sphere dragged along the same direction
[see (8)]. Equation (11) also suggests that even with
UN ¼ 0, the squirmer may swim. That symmetric squirm-
ing modes may contribute to the swimming speed was also
noted by Eastham and Shoele [16] for squirmers moving in
fluids in which the viscosity is a function of the concen-
tration of surrounding nutrients and also previously shown
for squirmers in shear-thinning fluids [21].
From Eqs. (11) and (12), we note that if the swimmer

moves along the gradient, ek∇η, it does not rotate (Ω ¼ 0),
and therefore maintains its orientation. Depending on its
type of propulsion, and consequently, on the sign of
α ¼ B2=B1, it can swim faster, slower or at the same speed
as in a Newtonian fluid with uniform viscosity. When the
particle swims down a viscosity gradient, pusher swimmers
(α < 0) swim faster, because they generate thrust (or push)
at the rear which is in a fluid more viscous than that in the
front. Pullers (α > 0), on the contrary, swim more slowly as
they pull on the less viscous fluid at their front. Neutral
swimmers (α ¼ 0), which have drag and thrust centers that
coincide, swim with the Newtonian speed. The dynamics
for pullers and pushers reverses when swimming up a
viscosity gradient. The viscosity gradient can also cause
rotation of the swimmer as well as a drift velocity when the
swimming is not parallel to the gradient. The drift along the
viscosity gradient depends only on the second squirming
mode B2, which governs whether fluid is drawn into
(B2 < 0) or expelled from (B2 > 0) around the equator
of the swimmer and causes drift up or down the gradient
respectively; this motion may arise even when UN ¼ 0.
These results can all be understood by examining the

effect of the viscosity gradient on thrust and drag sepa-
rately. One finds that, for a squirmer, the change in thrust
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dominates the change in drag and, consequently, the
squirmer rotates in a direction opposite to that of a passive
sphere (one can picture for example a small row boat in a
viscosity gradient, where the differences in the viscosity
between the paddles dominates the change in dynamics).
In general, when not perfectly aligned with the viscosity

gradient, squirmers rotate toward the direction of lower
viscosity and hence display viscophobicity (negative vis-
cotaxis), irrespective of the type of propulsion. We dem-
onstrate this in Fig. 1, where we consider the motion of
squirmers in a linear viscosity gradient. We take α ¼ 0 for
neutral squirmers, α ¼ �2 for pullers and pushers, and set
ε ¼ 0.1. As we can see in Fig. 1, the swimmers are all
ultimately reoriented down the viscosity gradient with a
characteristic (dimensionless) length scale of reorientation
that scales as ∼Oð1=εÞ; however, the trajectories do depend
on the type of swimmer. Pushers swim the furthest, both
laterally across the gradient and vertically along thegradient,
pullers travel the least. These differences in trajectories
could then be used to sort the swimmers, for example, based
on distance perpendicular to the gradient, from the point of
release. Sorting of swimmers based on swimming speeds
has been demonstrated in non-Newtonian fluids [32]; here
the differences in the swimming speeds arise purely due to
the effects of the viscosity gradient.
We also plot trajectories of squirmers (in this case, with

only the first two squirming modes) moving in a plane
with a radially varying two-dimensional viscosity field of
the form ∇η ¼ ðη0=RÞer where R is a characteristic length
scale describing the gradient, er is the cylindrical radial
basis vector, and the origin in the coordinate system is
defined at an arbitrary point in the fluid which may be
seen as a “viscosity sink.” Here ε ¼ a=R ≪ 1 and η1 ¼
η0r=a where r2 ¼ x2 þ y2. We use a locally linear
approximation whereby the local dynamics are given by
(11) and (12) to calculate the trajectories. Although the
expressions have been derived only for linear gradients,

they are expected to hold for radial gradients as well, due
to small curvatures at the scale of the particle (except at
the origin). The trajectories, plotted in Fig. 2 (with ε ¼ 0.1
and α ¼ 0 and �2), display qualitatively different behav-
ior for the three types of swimmers. Pushers find a stable
orbit about the “origin” of the viscosity gradient, the
trajectory of neutral swimmers is also bounded at long
times, but, in contrast, trajectories of pullers grow un-
bounded. Writing the orientation vector e ¼ fcos θ; sin θg,
and the viscosity gradient ∇ðη=η0Þ ¼ εfcosω; sinωg=a, in
terms of angles θ and ω measured from the x axis, we can
recast (11) and (12) in terms evolution equations for
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FIG. 1. Trajectories of squirmers with an initial orientation ei
orthogonal to the gradient ∇η, from t ¼ 0 to t ¼ 100a=B1.
Eventually all squirmers swim down the viscosity gradient.

FIG. 2. Planar trajectories of pushers, neutral swimmers, and
pullers in a viscosity field that increases radially outward from the
origin, from t ¼ 0 to t ¼ 4000a=B1. The initial orientation of the
swimmers is ex, and their initial position, (x=a ¼ 1, y=a ¼ 1), is
marked by the red dot.
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ψ ¼ θ − ω and r. We find fixed points, when
_ψ ¼ 0, _r ¼ 0, are r0=a ¼ ð2þ 9

5
εα cosψ0Þ=ε and ψ0 ¼

cos−1½−ð5=9εαÞð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð27=25Þε2α2

p
Þ� for α ≠ 0, and

when α ¼ 0, r0=a ¼ 2=ε and ψ0 ¼ π=2. For pushers, the
fixed point is a stable spiral, for pullers, it is an unstable
spiral, for neutral swimmers, it is a center. These char-
acteristics can be readily observed in Fig. 2 where we see
very different dynamics for the three types of squirmers.
Neutral and pusher swimmers remain bounded or trapped
near the viscosity “sink”; therefore puller swimmers can
be sorted out at farther distances.
To estimate the potential influence of thermal fluctua-

tions, we compare the time scale due to viscotactic
reorientation from (12), τ ∼ a=εUN , with the rotational
diffusion timescale of a sphere, τR ¼ 8πη0a3=kBT, and find
that thermal fluctuations can be neglected provided
kBT=εη0a2UN ≪ 1. This implies that in a waterlike fluid
at room temperature thermal fluctuations are only impor-
tant for micron-sized (and smaller) swimmers [15].
In summary, we observe that axisymmetric squirmers are,

in general, viscophobic. Unless perfectly aligned with the
gradient, they turn towards regions of lower viscosity. Using
the squirmer model, we find that the effects of viscosity
gradients on the dynamics of active particles depend on the
details of their propulsion type and even simple viscosity
fields lead to different dynamics for different micro-
swimmers. The change in the dynamics of the swimmers
can be readily explained by separately investigating the
change in thrust and drag; while viscosity gradients affect
both the drag on the body and the propulsive force generated
by the swimming gait, the change in the latter tends to
dominate the response for spherical squirmers; the opposite
might be true for swimmers of a different shape thereby
rendering positive viscotaxis. Finally, we showed how
viscotaxis may be used as a method to control the motion
of active particles through different viscosity profiles and
highlighted how changes in the dynamics of different
swimmers may be used as a mechanism to sort them based
on their swimming style.
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