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Hydrodynamics of active particles in viscosity gradients
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In this work, we analyze the motion of an active particle, modeled as a spherical
squirmer, in linearly varying viscosity fields. In general, the presence of a particle will
disturb a background viscosity field and the disturbance generated depends on the boundary
conditions imposed by the particle on the viscosity field. We find that, irrespective of the
details of the disturbance, active squirmer-type particle tend to align down viscosity gra-
dients (negative viscotaxis). However, the rate of rotation and the swimming speed along
the gradient do depend on the details of the interaction of the particle and the background
viscosity field. In addition, we explore the relative importance on the dynamics of the local
viscosity changes on the surface of active particles versus the (nonlocal) changes in the flow
field due to spatially varying viscosity (from that of a homogeneous fluid). We show that
the relative importance of local versus nonlocal effects depends crucially on the boundary
conditions imposed by the particle on the field. This work demonstrates the dangers in
neglecting the disturbance of the background viscosity caused by the particle as well as in
using the local effects alone to capture the particle motion.
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I. INTRODUCTION

Active particles are particles or organisms that convert the stored energy or energy from the
surroundings into directed motion [1], and a suspension of active particles can be referred to as
active matter. We are concerned here with the micron-sized active particles such as biological
swimming microorganisms or the synthetic microrobots. Because of the ubiquity of microorganisms
in nature, as well as aided by tremendous progress in microfluidic experimental techniques, there has
been an enormous amount of research on the motion of active particles in viscous fluids, including
developing an understanding of the physics governing microorganism motility [2–10].

Active particles typically reside in the gradients of heat, light, or chemicals and often react to
these fields by reorienting and moving along the gradients, a phenomenon known as taxis. By
exploiting this tendency, one can sort or control the active matter by imposing external gradients.
A relatively unexplored form of taxis is viscotaxis—directed motion in viscosity gradients. Several
microorganisms move through viscosity gradients and hence exhibit viscotaxis. For instance Lep-
tospira and Spiroplasma have been observed to display positive viscotaxis, moving up viscosity
gradients [11–14], while Escherichia coli displays negative viscotaxis [15]. Green microalgae,
Chlamydomonas reinhardtii, display complex dynamics in the presence of spatial variations in
viscosity. If viscosity gradients are weak, they tend to accumulate in the high viscosity regions
due to slower speeds, but in the presence of strong viscosity gradients, they reorient toward the
low viscosity regions, displaying negative viscotaxis [16,17]. Helicobacter pylori, a bacterium
commonly found in our guts, also swims through viscosity gradients as it propels by locally lowering
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the viscosity of the surrounding mucus layer [18,19]. Hence, a physical description of the fluid
dynamics of viscotaxis allows us to understand the consequences on the motility of microorganisms
in nature, but also presents a mechanism by which to control active matter, both natural and
synthetic.

Several researchers have analyzed the motion of particles, passive or active, in viscosity gra-
dients. Initial research in this field focused on particles moving through a fluid that is otherwise
homogeneous in the absence of the particle, but the presence of the particle generates a disturbance
(inhomogeneity) in fluid properties such as viscosity. For instance, a particle hotter than the
surrounding fluid disturbs the temperature and thus the viscosity, thereby generating the gradients.
Research of this sort started with the calculation of the force and torque acting on a hot passive
particle [20]. It was found that a dipolar temperature distribution on the particle, that causes a
similar viscosity distribution in the nearby fluid, induces a coupling between the force (respectively,
torque) and the angular velocity (respectively, translational velocity). Such coupling is absent for
nonskew particles (e.g., sphere, spheroid, disk, etc.) in the homogeneous Newtonian fluids [21].
Later, the motion of an active particle in viscosity gradients caused by variation in the concentration
of nearby nutrients was analyzed [22]. This work modeled active particles as a spherical squirmer
with fixed power and assumed a weak dependence of viscosity on the nutrient concentration. In the
squirmer model, an active particle propels due to prescribed slip on its surface, which is ultimately
a manifestation of the coordinated beating of cilia on the surface of a ciliated organism or the
chemical reactions occurring on the surface of a phoretic particle. It was found that the speed of a
swimmer can either increase or decrease depending on the relative importance of the advective to the
diffusive transport rate of the viscosity. Recently, the motion of a spheroidal squirmer in the nutrient
induced viscosity gradients was also analyzed [23]. Accounting for a strong coupling between the
nutrient concentration and the viscosity, it was found that nutrient advection and viscosity gradients
significantly affect the swimming and feeding performance but not the aspect ratio of the particle.

Recent research explores the motion of active particles in preexisting (or background) viscosity
gradients. Such analysis is generally carried out by representing active particles as prototypical
model swimmers and often by treating the background viscosity field as linear. Initial research
in this field modeled active particles as spheres connected by rods, where each sphere locally
sees a constant background viscosity, and is acted on by a fixed active (thrust) force, while
hydrodynamic interactions are neglected [24]. Using this approach, it was found that nonchiral
(linear) active particles generically move up gradients unless they are uniaxial, in which case they
do not exhibit viscotaxis by symmetry. Otherwise, nonlinear or chiral swimmers can even move
down the gradients. As Leptospira and Spiroplasma exhibit nonuniaxial shapes while E. coli is
chiral, this work possibly explains the viscotaxis of these organisms based on their shape and
the resulting hydrodynamics. Later, the motion of spherical squirmers in viscosity gradients was
analyzed, taking into account locally varying hydrodynamic forces and modifications in the flow
due to viscosity differences, and they were found to move down viscosity gradients [25]. A different
model microorganism, Taylor’s swimming sheet that propels by passing traveling waves along its
surface, moving along or against the viscosity gradients was also analyzed [26]. It was found to
speed up in the presence of viscosity gradients irrespective of its direction of propulsion. Recently,
the axisymmetric motion of a synthetic helical swimmer crossing a sharp as well as diffuse viscosity
interface was analyzed [27]. It was found that a head-first (respectively, tail first) swimmer moving
up the gradients experiences the speed reduction (respectively, enhancement) but a swimmer moving
down the gradient always undergoes the speed reduction irrespective of its orientation.

A viscosity gradient can arise due to the spatial variation of a scalar like the temperature, salt or
nutrient concentration in a fluid that is ultimately coupled to viscosity. However, the introduction of
a particle will generally disturb a preexisting viscosity field to satisfy boundary conditions for the
scalar field on the surface of the particle (because the properties of the particle are different from
those of the fluid). For instance, even at steady-state a particle in an otherwise linear temperature
field will disturb the background field unless the thermal conductivity of the particle and the fluid are
identical. The disturbance generated by the particle tends to vanish far from the particle, however,
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FIG. 1. A schematic showing the motion of an active particle in linear viscosity fields and the associated
coordinate system. The radius of the particle is a. It translates and rotates with the velocities U and �,
respectively. The ambient viscosity η0 increases linearly with x.

near the particle, it is the same order of magnitude as that of the preexisting (background) viscosity
field. Despite this, most previous work on active particles in viscosity gradients have neglected
the disturbance caused by the particle to the ambient viscosity field [16,24,25,27]. In this work
we aim to address this gap and investigate the effect of the disturbance of the viscosity induced
by the presence of the particle and the consequence on viscotaxis. Furthermore, several previous
studies used only the local effects of changes in viscosity not the (nonlocal) modification of the flow
(from that in a homogeneous fluid), to study the particle motion in viscosity gradients [24,27]. These
nonlocal effects may be as important as the complementary local effects. In fact, the nonlocal effects
have been observed to be more important than the local effects for particles (passive and active) in
non-Newtonian fluids [28–31]. In light of this, we perform a quantitative comparison between local
and nonlocal effects for the motion of an active particle in viscosity gradients.

We organize the paper as follows. We provide the mathematical formulation associated with the
motion of active particles in viscosity gradients in Sec. II, and describe the solution methodology
in Sec. III. We then discuss the influence of disturbance viscosity in Sec. IV, and distinguish
between the local and nonlocal effects, and quantify these effects in Sec. V. We finally provide
few concluding remarks in Sec. VI.

II. SWIMMING IN VISCOSITY GRADIENTS

We consider the motion of an active particle in an otherwise quiescent Newtonian fluid (see
Fig. 1 for a schematic). In the absence of the particle, the fluid viscosity, η0(x), is nonuniform due
to corresponding spatial variations in the temperature, salt, or nutrient concentration. The particle
disturbs the ambient (or background) viscosity field as its properties (like thermal conductivity)
are usually different from those of fluid. We denote this disturbance viscosity by η′(x) and hence
the viscosity in the presence of particle is η(x) = η0(x) + η′(x). We are interested in leading-order
effects and so simply prescribe a linear variation of the ambient viscosity field, η0 = η∞ + η∞ x

L ,
where the variation itself occurs on the macroscopic length scale L. Usually, this length scale is
much larger than the particle size a, i.e., ε = a

L � 1. This means that in the vicinity of the particle,
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the ambient viscosity varies weakly, η0 = η∞ + η∞a
L

x
a = η∞ + εη∞x/a = η∞ + εη1, where η1 =

η∞x/a. Noting the absolute value of the viscosity does not affect the dynamics of an active particle
with a prescribed gait [5], we choose an arbitrary point in the fluid as the origin in the laboratory
frame of reference, and we denote the position vector with respect to the origin and the unit vectors
in the Cartesian coordinate system, respectively, by x = (x, y, z), {ex, ey, ez}. In this frame, x = xc

denotes the center of the particle. Also, η∞ is some reference viscosity while ε characterizes the
deviation from this reference viscosity.

Neglecting fluid inertia, the flow is governed by the incompressible Stokes equations

∇ · σ = 0, (1)

∇ · u = 0, (2)

where u is the velocity field and σ the stress tensor defined as

σ = −pI + η∞γ̇ + τNN , (3)

where γ̇ = ∇u + (∇u)T and we have defined

τNN = (η(x) − η∞)γ̇, (4)

which captures the difference in stress due to changes in viscosity from the reference value η∞.
The transport of the scalar (e.g., temperature, salt, or nutrient concentration) that determines

the viscosity is governed by an advection-diffusion equation. For weak variations of the scalar, the
change in the viscosity is linearly proportional to the change in the scalar which means that the
viscosity transport is also governed by a similar advection-diffusion equation. The relative order
of magnitude of the advective to the diffusive transport of viscosity is characterized by the Péclet
number Pe which can be written as Pe = RePr. For swimming in water, the Reynolds number Re ∼
10−5–0.1 [5], the Prandtl number Pr ∼ 7–103 [32–34] and hence Pe ∼ 10−4–102. Here, the low and
relatively high (∼0.1) values of Re occur, respectively, for the micron sized organism like E. coli and
larger organism like Paramecium while the low and high values of Pr, respectively, are due to the
high and low diffusive scalar like the temperature and the salt or nutrient concentration. The Péclet
number is small for the motion of the small to moderate sized organisms like E. coli or human
spermatozoon in water with temperature or salt variations. In this case, the viscosity transport is
simply governed by a Laplace equation,

∇2η = 0. (5)

Here, the Reynolds number Re is the ratio of the inertial to the viscous forces while the Prandtl
number Pr is the ratio of the diffusivities of the momentum to the viscosity transport.

Far away from the particle, the flow decays to zero while the viscosity approaches the ambient
viscosity

u → 0, η → η0(x) as r = |r| → ∞, (6)

where r = x − xc. On the particle, the fluid velocity is same as the particle surface veloc-
ity as a consequence of the kinematic and no-slip boundary conditions. The particle itself is
propelling with a translational velocity U and an angular velocity � due to the activity that
is embedded in the slip velocity on the particle surface us. Thus, the fluid velocity on the
particle is

u = U + � × r + us on Sp, (7)
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where Sp denotes the particle surface. We neglect the particle inertia and assume the particle
is neutrally buoyant. This implies the hydrodynamic force and torque acting on the particle are
zero:

F =
∫

Sp

n · σ dS = 0, (8)

L =
∫

Sp

r × (n · σ ) dS = 0, (9)

where n is an unit normal to the surface that points into the fluid.
We model the active particle as a spherical squirmer of radius a that has only the tangential

squirming modes [35–37]. This model is a good representation of the ciliated organisms like
Paramecium or Opalina which generate slip through a synchronous motion of a large number of
cilia on their surface. In this model, the slip velocity us is given by

us = −
∞∑

n=1

BnWn(p · er )p · (I − erer ), Wn(x) = 2

n(n + 1)
Pn

′(x). (10)

Here p is the orientation of the particle, er = r/r, Pn is the Legendre polynomial of degree n, and
Bn are the squirming modes. In homogeneous Newtonian fluids, only the B1 mode contributes to the
swimming speed while the B2 mode leads to the slowest decaying flow field and hence it determines
the far-field representation of the swimmer. The ratio α = B2/B1 can be used to distinguish the three
types of swimmers. So-called pusher swimmers, like E. coli, push the fluid along their axis while
drawing fluid from their sides. Pullers, like Chlamydomonas, do the opposite, in that they pull the
fluid along their axis while ejecting fluid from their sides. Neutral swimmers like Volvox carteri
exhibit the flow signature similar to that of a potential dipole. Puller, pusher and neutral swimmers
are characterized by α > 0, <0, and = 0, respectively.

III. SOLUTION METHOD

We apply the reciprocal theorem to the unknown flow of the present problem and the auxiliary
flow due to a rigid body motion of a spherical particle in a homogeneous fluid of viscosity η∞.
After making use of the boundary conditions on the particle surface in both problems, we find the
swimming velocity of the active particle to be

U = R̂−1
FU ·

[∫
Sp

us · (n · T̂U)dS + Fl
NN +

∫
(∇ · τNN ) · ĜU dV

]
. (11)

Here U = [U �]� is a six-dimensional vector containing the particle’s translational and angular
velocity while Fl

NN = [Fl
NN Ll

NN ]� is also a six-dimensional vector consisting of the force and
torque due to the stress τNN :

Fl
NN =

∫
Sp

n · τNN dS, (12)

Ll
NN =

∫
Sp

r × (n · τNN ) dS. (13)

We note that the variables with caret are associated with the auxiliary flow problem. Specifically,
ĜU · Û, T̂U · Û, respectively, are the flow field, and the stress tensor due to the rigid body motion
of a sphere in a homogeneous fluid. The sphere experiences the hydrodynamic force or torque,
F̂ = −R̂FU · Û. A detailed derivation may be found elsewhere [38]. Equation (11) explicitly divides
the dynamics of an active particle in fluid with spatially varying viscosity into three contributions:
the first term in the brackets on the right-hand side (when multiplied with the mobility) gives the
translational and rotational velocity of the active particle in a homogeneous fluid with constant
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viscosity; the second term represents the effect on the dynamics due to changes in the force and
torque from that in a homogeneous fluid; the final term accounts for changes in the dynamics due
to changes in the flow field that arise as a result of differences in the stress tensor from that of a
homogeneous fluid with constant viscosity.

Separating Eq. (11) for the translational velocity and the angular velocity we have

U = R̂−1
FU ·

[∫
Sp

us · (n · T̂U )dS +
∫

Sp

n · τNN dS +
∫

(∇ · τNN ) · ĜU dV

]
, (14)

� = R̂−1
L� ·

[∫
Sp

us · (n · T̂�)dS +
∫

Sp

r × (n · τNN ) dS +
∫

(∇ · τNN ) · Ĝ� dV

]
. (15)

Here, ĜU · Û, T̂U · Û (respectively, Ĝ� · �̂, T̂� · �̂) are the flow field and the stress tensor due to the
translation (respectively, rotation) of a sphere in a homogeneous fluid with velocity Û (respectively,
�̂). The translating particle experiences the hydrodynamic force F̂ = −R̂FU · Û, while the rotating
particle experiences the hydrodynamic torque L̂ = −R̂L� · �̂. For a sphere, R̂FU = 6πη∞aI and
R̂L� = 8πη∞a3I.

We perform a regular perturbation in ε and expand any variable f (ε) as f = f0 + ε f1 +
ε2 f2 + .... As η(x) − η∞ = εη1 + η′ ∼ O(ε), τNN = (η(x) − η∞)γ̇ ∼ O(ε), at leading order, we
have a swimmer moving through a homogeneous Newtonian fluid of viscosity η∞. The velocity of
such swimmer is well known:

U0 = 1

6πη∞a

∫
Sp

us · (n · T̂U )dS = 2

3
B1p ≡ UN , (16)

�0 = 1

8πη∞a3

∫
Sp

us · (n · T̂�)dS = 0. (17)

At first order, we have

U1 = 1

6πη∞a

∫
Sp

n · τNN,1 dS + 1

6πη∞a

∫
(∇ · τNN,1) · ĜU dV , (18)

�1 = 1

8πη∞a3

∫
Sp

r × (n · τNN,1) dS + 1

8πη∞a3

∫
(∇ · τNN,1) · Ĝ� dV. (19)

Here ετNN,1 = (η(x) − η∞)γ̇0 = (εη1 + η′)γ̇0, where γ̇0 = ∇u0 + (∇u0)T is the rate of strain
tensor associated with the leading-order flow u0. We see that the variation of viscosity from the
constant reference viscosity η∞ changes the traction locally on the surface of the active particle
but also modifies the flow from its value in the homogeneous fluid u0. Both these changes alter the
swimming velocity from that in the homogeneous fluid U0, �0 represented by an extra velocity U1,
�1 [see Eqs. (18) and (19)]. The effect of locally modifying the viscosity from that of a constant
viscosity η∞ to εη1 + η′ alone (without the effect of the associated change in the flow from u0) is
referred to as the local effect in line with the literature on the motion of particles in shear-thinning
fluids and is given by the surface integral terms in Eqs. (18) and (19). The complementary effect
due to modifying the flow from the homogeneous fluid value u0 (without the associated change in
the viscosity on the surface of the particle) is referred to as the nonlocal effect and this is given by
the volume integral terms in Eqs. (18) and (19).

If the properties of the particle are same as those of the fluid, the particle does not produce any
disturbance (η′ = 0) and it propels with the first order velocities [25]

U1 = −aB2

5
(I − 3pp) · ∇

(
η1

η∞

)
, (20)

�1 = −1

2
UN × ∇

(
η1

η∞

)
. (21)
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The effect of the ambient viscosity is to turn the particle to align it against the viscosity gradient
(negative viscotaxis). In this steady-state orientation, relative to their speed in the homogeneous
fluid, the pushers speed up, the pullers slow down and the neutral swimmers do not experience any
speed change. We next demonstrate the significance of the disturbance viscosity.

IV. EFFECT OF THE DISTURBANCE VISCOSITY

Recall the viscosity field satisfies the Laplace equation and η = η0 + η′. As the ambient viscosity
η0 is linear in position, the disturbance viscosity η′ must also satisfy a Laplace equation

∇2η′ = 0, (22)

and also decays to zero far from the particle

η′ = 0 as r → ∞. (23)

The general solution of Eq. (22), satisfying Eq. (23), is given by

η′ =
∞∑

k=0

k∑
m=0

r−k−1(Ak,m cos mθ + Bk,m sin mθ )Pm
k (cos φ), (24)

where Ak,m, Bk,m are the constant coefficients, φ, θ are the polar and azimuthal angles in the
spherical coordinate system located at the center of the particle while Pm

k is the associated Legendre
polynomial of degree k and order m. Here, the terms proportional to 1/r, 1/r2, respectively, are
the source and source-dipole, essentially the Green’s functions of the Laplace equation and its
derivative. The exact structure of the disturbance viscosity and its influence on the swimming ve-
locities depend on the boundary condition on the particle surface. This surface can be impermeable
(respectively, insulating) to the nutrient or the salt concentration (respectively, to the temperature)
that is responsible for the viscosity variations. In this case, a no-flux condition for the viscosity
holds on the particle surface, n · ∇η = 0 at r = a. Alternatively, the particle surface can be at
a constant temperature which translates to a constant viscosity condition on the particle surface,
η = ηp = const. at r = a. We hereby analyze these two cases separately.

A. No-flux

The no-flux condition can be simplified to

∂η′

∂r

∣∣∣∣
r=a

= −εη∞
a

sin φ cos θ. (25)

The disturbance viscosity that satisfies this constraint is given by

η′ = εa2η∞
2r3

(x − xc) = εa3

2r3
η1(x − xc). (26)

The no-flux condition prevents the occurrence of the source term and the solution is a source-
dipole. This disturbance viscosity has the same angular dependence as that of the ambient viscosity,
however, unlike the ambient viscosity, the disturbance viscosity decays with position (see Fig. 2).
This leads to a swimming velocity due to the disturbance viscosity of a similar form as that due to
the ambient viscosity but with a reduced magnitude. The change in the velocity of the particle due
to the disturbance viscosity alone (denoted by a prime) is given by

U′
1 = −aB2

60
(I − 3pp) · ∇

(
η1

η∞

)
, (27)

�′
1 = −1

8
UN × ∇

(
η1

η∞

)
. (28)
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FIG. 2. (a) The ambient viscosity relative to the reference viscosity and (b) the disturbance viscosity due
to the no-flux condition at the instant when the particle’s center is at the origin in the laboratory frame, i.e.,
xc = 0. These viscosity distributions do not depend on the orientation of the particle.

Combining the contribution of the ambient and the disturbance viscosities, the change in the
swimming velocity of a particle with no-flux condition is

U1 = −13

60
aB2(I − 3pp) · ∇

(
η1

η∞

)
, (29)

�1 = −5

8
UN × ∇

(
η1

η∞

)
. (30)

We see that the disturbance viscosity does not change the physics predicted by considering only the
ambient viscosity, it merely increases the rate at which the particle rotates to align opposite to the
viscosity gradients and it also increases the speed change experienced by the pushers and pullers in
the steady-state orientation (pushers swim faster and pullers swim slower while neutral swimmers
propel at the same speed compared to that in the homogeneous fluid).

B. Constant viscosity

The constant viscosity condition simplifies to

η′|r=a = ηc − εη∞ sin φ cos θ, (31)

where ηc = ηp − η∞ − εη∞xc/a. This constraint has two parts, the first part is constant, ηc, while
the second varies spatially over the particle surface. The constant is enforced through a source term
while the spatial variation is satisfied through a source-dipole term. Putting these two together, the
disturbance viscosity is

η′ = ηca

r
− εa2η∞

r3
(x − xc) = ηca

r
− εa3

r3
η1(x − xc). (32)

We see that the source dipole here is a factor (= − 2) times the source dipole due to the no-flux
condition in Eq. (26), hence the swimming velocity due to the source dipole here should be the
same factor times the swimming velocity due to the no-flux condition. The source term is spherically
symmetric [see Fig. 3(a)], so it has no preferred direction. Hence the source term will induce only
a translational velocity along p and no angular velocity. Overall, the change in the velocity of the
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FIG. 3. (a) The source and (b) the source-dipole part of the disturbance viscosity due to a constant viscosity
condition at the instant when the particle center is at the origin in the laboratory frame, i.e., xc = 0. These
viscosity distributions do not depend on the orientation of the particle.

particle due to the disturbance viscosity alone (with the constant viscosity boundary condition) is
given by

U′
1 = 1

12

ηc

εη∞
UN + aB2

30
(I − 3pp) · ∇

(
η1

η∞

)
, (33)

�′
1 = 1

4
UN × ∇

(
η1

η∞

)
. (34)

Again, summing up the contributions of the ambient and the disturbance viscosities, the change in
the velocity of a particle with the constant viscosity boundary condition is

U1 = 1

12

ηc

εη∞
UN − aB2

6
(I − 3pp) · ∇

(
η1

η∞

)
, (35)

�1 = −1

4
UN × ∇

(
η1

η∞

)
. (36)

The disturbance viscosity does not change the reorientation process predicted by considering only
the ambient viscosity, it only decreases the rate at which the particle turns to align itself against
the viscosity gradients. The disturbance viscosity, however, modifies the speed changes experienced
by the swimmer in the steady-state orientation in comparison to those predicted by considering the
ambient viscosity alone. A neutral swimmer propels faster than that in the homogeneous fluid if it
is cooler than the ambient fluid (ηc > 0). A pusher or puller swims faster or slower than that in the
homogeneous fluid depending on the magnitude of α = B2/B1 and how hot or cold the particle is
relative to the ambient fluid.

V. LOCAL VERSUS NONLOCAL EFFECTS

Instead of analyzing local and nonlocal effects simultaneously, as we did in the previous section,
in this section we look at each term separately and then quantify their relative importance. We do
so because (as we show below) local effects are typically easy to predict, but alone may or may not
qualitatively capture the dynamics.
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TABLE I. The first-order local, nonlocal, and total velocities of the swimmer. Here, δ = I − 3pp.

Velocity Boundary condition Local Nonlocal Total

�1 No-flux − 3
4 UN × ∇(

η1
η∞

)
1
8 UN × ∇(

η1
η∞

) − 5
8 UN × ∇(

η1
η∞

)
Constant viscosity 0 − 1

4 UN × ∇(
η1
η∞

) − 1
4 UN × ∇(

η1
η∞

)
U1 No-flux − 1

15 aB2δ · ∇(
η1
η∞

) − 3
20 aB2δ · ∇(

η1
η∞

) − 13
60 aB2δ · ∇(

η1
η∞

)
Constant viscosity 0 ηc

12εη∞ UN
ηc

12εη∞ UN

− 1
6 aB2δ · ∇(

η1
η∞

) − 1
6 aB2δ · ∇(

η1
η∞

)

Analyzing the results in Table I, we see that the local, nonlocal and total effects depend only on
the first two squirming modes, which means that the higher (n > 2) modes do not contribute. Also,
we find by comparing the local effects with the total response that the results are qualitatively similar
for a particle imposing the no-flux condition to the viscosity field. However, for an active particle
with a constant-viscosity boundary condition it is the nonlocal effects that are dominant. In fact, the
local effects for such particle are identically zero. This is because the viscosity field εη1 + η′ near
such particle is a constant (=ηc) and this reduces the local effects to the force or torque acting on
the particle in homogeneous fluid which is identically zero. In the sections below we unpack and
parse these results to develop a more mechanistic understanding of the results in this table.

A. Reorientation

For simplicity, we consider a particle with only B1 squirming mode and oriented orthogonal to
the viscosity gradients along the ey direction.

1. Local effects

The torque due to local changes in the viscosity is given by

Ll
NN = 2B1

a

∫
Sp

[η(x) − η∞]r × pdS. (37)

From this we see that the viscosity at the surface of the particle simply acts as a weight on the
moment arm, and that an asymmetry in the viscosity at the surface will lead to a reorientation of
the particle toward the lower viscosity. The viscosity at the surface has a contribution from both
the ambient and the disturbance η(x) − η∞ = εη1 + η′. We know from Eq. (32) that on the surface
of the particle η′ = −εη1 + const. to satisfy a constant viscosity boundary condition, and it is clear
from Eq. (37) that a constant viscosity on the surface of the particle clearly produces no net torque. In
contrast, Eq. (26) shows that to satisfy the no-flux boundary condition, η′ = 1

2εη1 + const. meaning
the asymmetry of the ambient viscosity at the surface of the particle, and thus the torque, is enhanced
by a 3/2 factor [see Fig. 2(b)]. An application of the divergence theorem to Eq. (37) allows one to
simply resolve the torque as

Ll
NN = −9

2
UN ×

∫
Vp

ε∇η1dV = −6πa3UN × ε∇η1, (38)

and multiplication by the mobility leads to the result in Table I.
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2. Nonlocal effects

Recall the nonlocal effect is given by
∫

(∇ · τNN,1) · Ĝ� dV . We use the expression for Ĝ� to
simplify this integral to ∫ (

a3

r3

)
r × ∇ · [(εη1 + η′)γ̇0]dV . (39)

As the strain-rate tensor due to B1 mode is divergence-free, the nonlocal effect finally simplifies to∫ (
a3

r3

)
r × ∇(εη1 + η′) · γ̇0dV . (40)

We examine the nonlocal effect by analyzing the kernel of the integral that represents the nonlocal
effects, ∇(εη1 + η′) · γ̇0. The contribution of ambient viscosity to this kernel that is not along the
radial direction is

εη∞
a

2a3

r5
B1(x − xc)ey + εη∞

a

2a3

r5
B1(y − yc)ex. (41)

Half of this kernel (the first term) has left-right mirror symmetry while the other half has front-
back mirror symmetry. Each half of this kernel induces an angular velocity of equal magnitude
but opposite direction making the net nonlocal effect due to the ambient viscosity to be zero. The
source part of the disturbance viscosity as well as its gradient do not have any directional preference
or any asymmetries. Hence, the nonlocal effect due to the source is zero. The source dipole part
of the disturbance viscosity is proportional to x and it decays with the position. So, the gradient
of the source dipole has two parts. One is along the gradient of the ambient viscosity and hence,
like the ambient viscosity, this part induces zero angular velocity. The other part is in the radially
inward direction due to the decay of source-dipole with position and also it is proportional to x. The
latter characteristic introduces a left-right mirror symmetry to the kernel that consequently induces
a nonzero angular velocity. As the disturbance viscosity always has a source-dipole component,
its nonlocal effect is nonzero regardless of the boundary condition on the particle surface. See the
fourth column in Table I.

B. Speed changes in the steady-state orientation

The steady-state orientation is opposite to the ambient viscosity gradients. For the ambient
viscosity, η0 = η∞ + εη∞x/a, this orientation is along −ex. In this configuration, the flow and
the viscosity fields are axisymmetric, the axis of symmetry is along the swimmer’s orientation.
To understand the speed changes in the steady-state orientation, we consider a swimmer with first
two squirming modes as the swimming velocity in viscosity gradients anyways depends on only
these two squirming modes.

1. Local effects

The force due to local variation in the viscosity is given by

Fl
NN =

∫
Sp

n · τNN dS =
∫

Sp

(εη1 + η′)n · γ̇0 dS. (42)

For a particle with constant viscosity condition, the viscosity εη1 + η′ is constant (=ηc) near
the particle and this reduces the local force to the force due to viscous traction in homogeneous
Newtonian fluid which is identically zero. In homogeneous fluids, the force due to pressure and
viscous traction are both zero to enforce the force-free condition on the particle. However, near a
particle with a no-flux boundary condition, the viscosity εη1 + η′ is 3

2εη1 + const. Here, the ambient
viscosity η1 is front-back mirror symmetric as η1 ∝ x. The flow and hence the shear-rate γ̇0,rx due
to B1 mode in the homogeneous fluid are front-back symmetric. This symmetry together with the
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mirror-symmetry in the viscosity induce a mirror-symmetry in the traction n · τNN,1, which means
that for every traction in front of the particle, there is an equal in magnitude but oppositely directed
traction on the back of the particle making the net local force to vanish. In contrast, the flow and
the shear-rate γ̇0,rx due to B2 mode in the homogeneous fluid are front-back mirror symmetric.
This mirror-symmetry along with a similar symmetry in the viscosity makes the traction front-back
symmetric, meaning that for every traction in front of the particle, there is an equal traction behind
the particle resulting in a finite local force. Hence, while the local force acting on a particle with
constant viscosity condition is zero, this force acting on a particle with no-flux condition depends
only on B2 mode. Again, a multiplication of this force with mobility gives the local velocity reported
in the third column of Table I.

2. Nonlocal effects

We examine the nonlocal effects by analyzing the kernel of the integral that represents the
nonlocal effects, ∇ · τNN,1 · ĜU or ∇ · τNN,1. Through a linear decomposition of the first order
problem, we can show that the term ∇ · τNN,1 modifies the flow from that in the homogeneous fluid
and therefore, is responsible for the nonlocal effect [31]. If the kernel and hence, the modified flow
are front-back mirror symmetric, then the nonlocal effect being the integral of the kernel vanishes.
As usual, the flow due to the B1 mode is front-back symmetric in the homogeneous fluid, while
the flow due to the B2 mode is mirror-symmetric. Meanwhile, the particle imposes a source-dipole
disturbance on the ambient viscosity. Inspecting the kernel, ∇ · τNN,1, we see that the symmetry of
the flow coupled with the symmetry of the disturbance viscosity leads to an integral that has mirror
symmetry and thus zero for the B1 mode, while nonzero for the B2 mode thereby generating a finite
nonlocal effect. In contrast, if the particle also imposes source term disturbance (with spherical
symmetry) on the viscosity, then the contribution is opposite (only due to the B1 mode). As a particle
generates a source-dipole irrespective of the boundary condition, the nonlocal effect depends on the
B2 mode regardless of the boundary condition on the particle. However, since a particle with a
constant viscosity condition additionally generates the source, the nonlocal effect on such particle
also depends on the B1 mode. See the fourth column in Table I.

VI. CONCLUSIONS

Spatial variations of viscosity in fluids may arise due to changes in temperature, salt or nutrient
concentration. Insertion of a particle into the fluid tends to disturb the background viscosity field due
to boundary conditions imposed by the particle on the viscosity field. In general we find that active
squirmer-type particles reorient down the viscosity gradient (negative viscotaxis) and they propel in
the steady-state orientation with a speed different from that in the homogeneous fluid. The specific
boundary conditions on the viscosity field at the surface of the particle do not qualitatively affect
the reorientation process, only changing the rate at which the steady-state orientation is achieved.
On the contrary, the speed changes experienced by the swimmer while propelling along the steady-
state orientation are significantly dependent on the boundary conditions on the particle. For active
particles that impose a no-flux condition, pushers speed up, the pullers slow down and the neutral
swimmers do not change their speed. In contrast, the speed changes experienced by a particle that
imposes a constant-viscosity boundary condition are more complex. Even the neutral swimmer
speeds up if it is cold relative to the ambient fluid while the speed changes of a pusher or a puller
depend on how strong the pusher or puller is (the ratio of the squirming modes, B2/B1) and how hot
or cold the particle is relative to the ambient fluid. This suggests the additional degrees of freedom,
the particle temperature and the squirming modes, that one can explore in controlling the active
matter.

We also quantified the relative importance of the local and nonlocal effects, where the local
effects are a consequence of locally modifying the viscosity but not the flow while the nonlocal
effects are due to changing the flow from that in the homogeneous fluid without altering the
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viscosity. We found that the local effects are sufficient to determine the motion of a particle imposing
a no-flux boundary condition but it is the nonlocal effects that dominate the (change in) dynamics
of a particle imposing a constant-viscosity boundary condition. Hence, one should exercise caution
when using a simple local effects based theory to study the motion of active particles in viscosity
gradients.
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